[{WikipediaArticle oldid='249875283'}] [{VerifyArticle user='leopold' template='Standard' date='02. Juni 2014' page-date='2014' editor='Hinteregger Thessa' }] [{ALLOW edit Admin}][{ALLOW view All}][{ALLOW comment All}][{ALLOW verify leopold}] %%information %%(font-size: 80%;) !!!License Information of Images on page ||Image Description||Credit||Artist||License Name||File | Factorial from 0! to 4!| Eigenes Werk| Stephan Kulla| [{Image src='https://www.austria-forum.org/cc/images/slim/cc-zero.png' alt='CC0' align='center' link='https://www.austria-forum.org/cc/cc0-10.html' target='_blank'}]| Datei:Factorial from 0! to 4!.svg | proportional Gamma-funciton curve -44 extremely accurate Γ ( x ) \displaystyle \Gamma (x) plot with cubic bezier-curves. Labels in embedded "Computer Modern" font| Eigenes Werk| Geek3| [{Image src='https://www.austria-forum.org/cc/images/slim/by-sa.png' alt='CC BY-SA 4.0' align='center' link='https://www.austria-forum.org/cc/by-sa-40.html' target='_blank'}]| Datei:Gamma-function.svg | Plot of the factorial , gamma function and Stirling's approximation in the interval −0.2, 3.2: y 1 ( n ) = n ! \displaystyle y_1(n)=n! y 2 ( n ) = Γ ( n + 1 ) \displaystyle y_2(n)=\Gamma (n+1) y 3 ( n ) = 2 π n ( n / e ) n \displaystyle y_3(n)=\sqrt 2\pi n(n/e)^n| Eigenes Werk| Geek3| [{Image src='https://www.austria-forum.org/cc/images/slim/by.png' alt='CC BY 3.0' align='center' link='https://www.austria-forum.org/cc/by-30.html' target='_blank'}]| Datei:Mplwp factorial gamma stirling.svg | Wikibooks logo; Favicon is| Eigenes Werk| Bastique , Ramac et al.| [{Image src='https://www.austria-forum.org/cc/images/slim/by-sa.png' alt='CC BY-SA 3.0' align='center' link='https://www.austria-forum.org/cc/by-sa-30.html' target='_blank'}]| Datei:Wikibooks-logo.svg | | | | [{Image src='https://www.austria-forum.org/cc/images/slim/by-sa.png' alt='CC BY-SA 3.0' align='center' link='https://www.austria-forum.org/cc/by-sa-30.html' target='_blank'}]| Datei:Wiktfavicon en.svg %% %%