[{WikipediaArticle oldid='221478642'}] [{VerifyArticle user='leopold' template='Standard' date='02. Juni 2014' page-date='2014' editor='Hinteregger Thessa' }] [{ALLOW edit Admin}][{ALLOW view All}][{ALLOW comment All}][{ALLOW verify leopold}] %%information %%(font-size: 80%;) !!!License Information of Images on page ||Image Description||Credit||Artist||License Name||File | Plot of the factorial , gamma function and Stirling's approximation in the interval −0.2, 3.2: y 1 ( n ) = n ! \displaystyle y_1(n)=n! y 2 ( n ) = Γ ( n + 1 ) \displaystyle y_2(n)=\Gamma (n+1) y 3 ( n ) = 2 π n ( n / e ) n \displaystyle y_3(n)=\sqrt 2\pi n(n/e)^n| Eigenes Werk| Geek3| [{Image src='https://www.austria-forum.org/cc/images/slim/by.png' alt='CC BY 3.0' align='center' link='https://www.austria-forum.org/cc/by-30.html' target='_blank'}]| Datei:Mplwp factorial gamma stirling.svg | Plot of the relative deviation between Stirling's approximation and the factorial ( gamma function ) in the interval 0, 30: y ( n ) = n ! − 2 π n ( n / e ) n n ! \displaystyle y(n)=\frac n!-\sqrt 2\pi n(n/e)^nn!| Eigenes Werk| Geek3| [{Image src='https://www.austria-forum.org/cc/images/slim/by.png' alt='CC BY 3.0' align='center' link='https://www.austria-forum.org/cc/by-30.html' target='_blank'}]| Datei:Mplwp factorial stirling relative deviation.svg %% %%