Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast

"Comammox"-Bakterien: Langsam, aber super-effizient#

Lösung des Stickstoff-Problems für Landwirtschaft, Kläranlagen und Trinkwasser rückt näher#

Elektronenmikroskopische Aufnahme eines Zell-Aggregats von Comammox-Bakterien
Elektronenmikroskopische Aufnahme eines Zell-Aggregats von Comammox-Bakterien der Art Nitrospira inopinata. Die spiralförmig gewundene Gestalt der Zellen ist gut erkennbar. Die Zellen haben einen Durchmesser von etwa 0,3 Mikrometer und sind bis zu 1,7 Mikrometer lang
Foto: Anne Daebeler und Stefano Romano

Der natürliche Stickstoff-Kreislauf der Erde wird aufgrund von menschlichen Aktivitäten, vor allem durch die Düngung mit Stickstoff in der Landwirtschaft, massiv beeinflusst. Das hat dramatische ökologische Folgen. Ein Prozess des Stickstoff-Kreislaufs, die Nitrifikation, ist dabei besonders wichtig. Sie wird von Mikroorganismen durchgeführt. Ein internationales ForscherInnenteam unter der Leitung der Mikrobiologen Michael Wagner und Holger Daims von der Universität Wien hat nun herausgefunden, dass neuartige "Comammox-Bakterien" die Nitrifikation viel effizienter durchführen als andere Mikroben – womöglich mit weitreichenden Folgen für Landwirtschaft, Kläranlagen und für die Aufbereitung von Trinkwasser. Die Studie erscheint aktuell in der Zeitschrift "Nature".

Was haben Trinkwasser, Abwasser, unberührte und landwirtschaftlich genutzte Böden gemeinsam? Überall kommt – in verschiedenen Mengen – Ammonium vor, eine Stickstoff-Verbindung, die während der Zersetzung abgestorbener Lebewesen frei wird und auch oft als Stickstoff-Dünger Verwendung findet. Letzteres hat massiven Einfluss auf den natürlichen Stickstoff-Kreislauf: Aufgrund menschlicher Aktivitäten wird vielen Ökosystemen mehr Stickstoff in Form von Ammonium zugeführt als durch natürliche Prozesse. Die Folgen sind dramatisch und reichen vom Verschwinden vieler Pflanzen über belastetes Grundwasser bis hin zur Eutrophierung (dem "Umkippen") von Gewässern, sauerstoffarmen "Todeszonen" in den Meeren und der Ansammlung des besonders starken Treibhausgases Distickstoffmonoxid (Lachgas) in der Atmosphäre.

Wichtige Nitrifikation#

Im Stickstoff-Kreislauf wird Ammonium von Mikroorganismen zuerst in giftiges Nitrit und anschließend in das etwas harmlosere Nitrat umgewandelt. Dieser zweistufige Prozess wird "Nitrifikation" genannt und hat eine immense ökologische Bedeutung. Nitrat geht besonders leicht aus Böden ins Grundwasser verloren. Daher reguliert die Nitrifikation, wie viel Stickstoff im Boden als Nährstoff für Wild- und Nutzpflanzen zur Verfügung steht und wie stark Grundwasser, Flüsse, Seen und Meere mit dem Stickstoff aus Düngern belastet werden. Die Nitrifikation ist aber auch für die Reinigung von Abwasser in Kläranlagen unerlässlich und spielt eine wichtige Rolle in der Aufbereitung von Trinkwasser.

Effiziente Comammox-Bakterien#

Einem internationalen Team unter der Leitung von Michael Wagner und Holger Daims, Mikrobiologen am Department für Mikrobiologie und Ökosystemforschung der Universität Wien, gelang nun erstmals die Isolierung in Reinkultur und die exakte Charakterisierung eines "Comammox"-Bakteriums. Comammox-Bakterien ("complete ammonia oxidizers") wurden von dem Team erstmalig 2015 in einem Nature-Artikel beschrieben. Sie wandeln Ammonium ganz allein zu Nitrat um – andere Mikroben sind dazu auf Arbeitsteilung angewiesen, in der jeder Partner nur einen der zwei Schritte der Nitrifikation durchführt. "Die Aufreinigung der Comammox-Bakterien von den anderen Mikroorganismen in der Probe war eine riesige Herausforderung, da Comammox-Bakterien sich nur langsam vermehren und wir die optimalen Bedingungen für ihre Zucht noch nicht kannten", sagt Michael Wagner.

Mit der Reinkultur gelang der Nachweis, dass Comammox-Bakterien Ammonium selbst dann noch zu Nitrat umsetzen können, wenn das Ammonium nur in äußerst niedrigen Konzentrationen in ihrer Umgebung vorhanden ist. "Comammox-Bakterien vermehren sich zwar langsam, sind dafür aber extrem effizient", so Dimitri Kits, Erstautor der Studie. Holger Daims fügt hinzu: "Dieser Befund verändert unser bisheriges Bild der Nitrifikation völlig. Lange Zeit glaubte man, dass andere Mikroben aus der Gruppe der Archaeen das Ammonium am effizientesten abbauen. Die Comammox-Bakterien können das offenbar noch besser".

Potenzial für neue Anwendungen#

Was bedeutet dies für die Praxis in Landwirtschaft, Kläranlagen und Trinkwasseraufbereitung? "Erstmals haben wir Einblicke in die Bedeutung der rätselhaften Comammox-Bakterien für den Stickstoff-Kreislauf gewonnen. Auf dieser Basis kann man neue Ansätze entwickeln, die Nitrifikation zu kontrollieren und in technischen Systemen besser zu nutzen", erklärt Wagner: "Das könnte helfen, die Stickstoff-Problematik zu entschärfen. Jetzt müssen wir noch herausfinden, ob Comammox-Bakterien mehr oder weniger Lachgas freisetzen als andere Mikroben im Stickstoff-Kreislauf". Die Studie über Comammox-Bakterien wurde von den Wiener ForscherInnen gemeinsam mit KooperationspartnerInnen in Russland, Dänemark und Kanada durchgeführt und vom Wissenschaftsfonds (FWF) sowie vom European Research Council (ERC) (Advanced Grant "Nitricare") gefördert.

Publikation in Nature#

"Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle“: K. Dimitri Kits, Christopher J. Sedlacek, Elena V. Lebedeva, Ping Han, Alexandr Bulaev, Petra Pjevac, Anne Daebeler, Stefano Romano, Mads Albertsen, Lisa Y. Stein, Holger Daims, Michael Wagner; in Nature,
DOI: 10.1038/nature23679

Wissenschaftliche Kontakte#

Univ.-Prof. Dipl.-Biol. Dr. Michael Wagner
Assoz. Univ.-Prof. Dipl.-Biol. Dr. Holger Daims
Department für Mikrobiologie und Ökosystemforschung
Forschungsverbund Chemistry meets Microbiology
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-766 00 sowie 766 04
wagner@microbial-ecology.net
daims@microbial-ecology.net

Rückfragehinweis#

Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
Universitätsring 1, 1010 Wien
T +43-1-4277-175 33
M +43-664-60277-175 33
alexandra.frey@univie.ac.at

Weiterführendes#