Seite - 3 - in 3D Printing of Metals
Bild der Seite - 3 -
Text der Seite - 3 -
metals
Review
SelectiveLaserMeltingofMagnesiumand
MagnesiumAlloyPowders:AReview
VyasarajManakari,GururajParandeandManojGupta*
DepartmentofMechanicalEngineering,NationalUniversityofSingapore,9EngineeringDrive1,
Singapore117576,Singapore;mbvyasaraj@u.nus.edu(V.M.);gururaj.parande@u.nus.edu(G.P.)
* Correspondence:mpegm@nus.edu.sg;Tel.:+65-6516-6358
AcademicEditor:HugoF.Lopez
Received: 9September2016;Accepted: 15December2016;Published: 26December2016
Abstract:Magnesium-basedmaterialsareusedprimarily indevelopinglightweightstructuresowing
to their lowerdensity. Further, beingbiocompatible theyofferpotential foruse as bioresorbable
materials fordegradablebonereplacement implants. Thedesignandmanufactureofcomplexshaped
componentsmadeofmagnesiumwithgoodqualityare inhighdemandintheautomotive,aerospace,
andbiomedicalareas. Selective lasermelting(SLM) isbecomingapowerfuladditivemanufacturing
technology,enablingthemanufactureofcustomized,complexmetallicdesigns. Thisarticle reviews
therecentprogress in theSLMofmagnesiumbasedmaterials. EffectsofSLMprocessparameters
andpowderpropertiesontheprocessinganddensificationof themagnesiumalloysarediscussed
indetail. Themicrostructureandmetallurgicaldefectsencountered in theSLMprocessedpartsare
described.ApplicationsofSLMforpotentialbiomedicalapplications inmagnesiumalloysarealso
addressed. Finally, thepapersummarizes thefindings fromthis reviewtogetherwithsomeproposed
futurechallenges foradvancingtheknowledge in theSLMprocessingofmagnesiumalloypowders.
Keywords: selective lasermelting (SLM);magnesium; additivemanufacturing; microstructure;
mechanicalproperties; corrosionbehavior
1. Introduction
Magnesium (Mg) is the sixthmost abundant element in the earth’s crust comprising about
2.7%of its composition [1].Magnesiumbasedmaterialsarepreferredwhentargetingweight-sensitive
applications, as theyare the lightest structuralmaterial availablewith adensity of only 1.74g/cc
which is~33%,~61%and~77%lower than thatof aluminium, titanium,and iron, respectively [2].
Increasing demand for light weighting drives the interest formagnesium to be used in various
engineering applications to achieve higher fuel economy, emission reduction etc. Other than its
lowdensity,magnesiumbasedmaterialsalsoexhibithighspecificmechanicalproperties, excellent
castabilityandmachinability,highdampingcharacteristics,highthermalstability,highthermaland
electrical conductivity, andresistance toelectromagnetic radiation [3–7]. However, theapplication
areasofmagnesiumhavebeen limitedbyits lowcorrosionresistanceandrelativelypoormechanical
properties, such as low elastic modulus, low strength, limited room temperature ductility and
toughness, rapid lossofstrengthwith temperature,andpoorcreepresistance [8,9].
Even thoughmagnesiumbasedmaterials arenot suitablewhere ahighmodulus is required,
a rangeofapplicationshasbeenevaluated in thebiomaterialsarea in therecentpast. Thecombination
ofsuperiorbiocompatibility,biodegradability, elasticmoduluscloser tohumanbone,andfavourable
mechanical propertiesmakesmagnesiumone of themost sought aftermaterials for orthopaedic
applications like implants and fixation devices [10]. In the recent past, manymagnesiumalloys
havebeendeveloped targetingbiomedical applications ranging frommaxillofacial reconstruction,
to paediatric orthopaedics, vascular stents, surgical clips, screws, plates, and bone-interfacing
Metals 2017,7, 2 3 www.mdpi.com/journal/metals
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie