Seite - 5 - in 3D Printing of Metals
Bild der Seite - 5 -
Text der Seite - 5 -
Metals 2017,7, 2
thehigh-temperaturemetallicpowder layerssuccessivelydepositedoneover theotherasultrathin
two-dimensional cross-sections [26]. Generally, thegeometrically complex componentshavebeen
fabricated by SLM with a high dimensional precision and good surface integrity without other
subsequentprocess requirements,which theconventional techniques (e.g., castingandmachining)
cannotkeeppacewitheasily [27].SLMisanefficientapproachthatcansignificantlyshortenthe lead
timeandthecosts involvedinthemanufacturingofhigh-valuecomponentsandoffersadvantages
of design freedom with a wide choice of materials, reduced material wastage, and elimination
of expensive tooling. Over the years, the process of SLM has become very well established for
titaniumalloys [28], steelandironalloys [29],nickelbasesuperalloys [30,31], cobaltbasealloys [32],
and aluminium alloys [33] and is providing an ideal platform to fabricate complex products,
novel shapes, hollow and functionally graded structures to exact dimensions for the aerospace,
medical, andmilitary industries.
Despite thecontinuingadvancement, therearevery fewexamples thathave fullyutilized the
potential of SLM to produce fully dense near-net shape components ofmagnesium and to gain
anunderstandingof laserprocessability.Accordingly, this reviewaimsto identify theadvancements
todate inSLMprocessingofmagnesiumandmagnesiumalloypowdersandoutlines the trendfor
futureresearchtoexpandtheapplicationrangeofmagnesiumbasedmaterials further.
2. SelectiveLaserMelting(SLM)Technology
SLMisapowderbedfusionprocess,whereinselectiveregionsof thepre-spreadpowderparticles
aremeltedand fusedbyahigh intensity laser energysource ina layerby layermanneraccording
tocomputeraideddesign (CAD)data. The term“laser” implies thata laser isused forprocessing,
“melting” refers to theparticular situation inwhichpowders are completelymelted and the term
“selective”specifies thatonlypartialpowder isprocessed[28]. TheSLMsystemgenerally iscomprised
ofaprocessinglaser,anautomaticpowderdeliverysystem,abuildingplatform,acontrollingcomputer
system, andmain accessorial parts (e.g., inert gas systemprotection, roller/scrapper for powder
deposition, andanoverflowcontainer) [34]. The focusandthemovementof the laserbeamonthe
build table iscontrolledbyusingabeamdeflectionsystemconsistingofgalvano-mirrorsandaflat
field-focusing lens. Theentireprocess including thepowder feeding,depositionsystem, scanning,
temperature,atmosphere,andbuildarecontrolledbyamanufacturingsoftware. Theoverallprocessing
stagesofSLMinclude(i)designinga3Dobjectmodelof thecomponent tobefabricatedusingCAD
software and then slicing thedesignedpart intomany layerswith every layer definedby a layer
thickness (typically20–100μm); (ii) asubstrate isfixedandlevelledforpart fabricationonthebuild
platform;(iii)aprotectiveatmosphere(e.g.,argonornitrogen)isfedintothebuildchambertominimize
possible surfaceoxidationandhydrogenpickup; (iv) spreadingofa thin layerofmetalpowderby
powderre-coateronasubstrateplatewithathicknessas theaforementionedslicedlayer thickness;
(v) scanning/processing thepowderbedinapredefinedpattern inorder toproduce layerwiseshape
basedon thegeometrydefinedby theCADmodel; and (vi) loweringof thebuildingplatformby
apredetermineddistance and repeating the last two stages for successive layers of powder until
the requiredcomponents are completelybuilt. InSLM,each layer is fabricatedbyfirst generating
anoutlineof thekeycomponent featureswhich is referred toas contouringandsubsequently the
powderwithin thecontour ismeltedusinganappropriatescanningstrategy.Once the laserscanning
process is completed, specimens fromthesubstrateplateareseparatedeithermanuallyorbyelectrical
dischargemachining(EDM).
SLM is a depositionwelding processwherein the laser beammelts the powder particles in
welding beads and showsphenomenausually observed forweldingprocesses [26]. Thephysical
behaviourof theSLMprocess includesabsorption, reflection, radiation, andheat transfer,melting
andcoalescenceofpowderparticles,phase transformations,amoving interfacebetweensolidphase
andliquidphase,fluidflowcausedbythesurface tensiongradientandmass transportationwithin
themolten pool followed by solidification, and chemical reactions [26,35]. Because of the use of
5
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie