Seite - 12 - in 3D Printing of Metals
Bild der Seite - 12 -
Text der Seite - 12 -
Metals 2017,7, 2
densification levelobtainedwasrestrictedat82%andanarrowprocessingwindowwasobtaineddue
to limitations intheSLMsystemasoperatingata laserpowerbeyond20W,causedsevereevaporation
andsubsequentoxidationofmagnesiumowingto its lowboilingpointandalowevaporationheat
(5.272kJ/kg)atambientpressure[64].Thelowerdensificationlevelsachievedinthisstudymayalsobe
attributedto the irregularshapeofmagnesiumparticlesusedas itaffects theflowabilityof thepowder
layers.AswaspostulatedbyAttaretal. [79] inSLMprocessingofTi-TiBcompositepowders,usageof
non-spherical shapedpowderparticlesnegatively influences theuniformdepositionofpowders,as
powderswith irregularshapemaynotfloweasilyandtendto interlockmechanicallyandentangle
with eachother, causinganobstruction inpowderflow, consequently leading to the formationof
porosities. It is alsoworthnoting that, thoughSLMisnormallyprocessedbasedon the complete
meltingmechanism, application of lower laser energydensities can lead topartialmelting of the
metalpowdersurface [80]. Thesesurface-meltedpowders join togetherdueto thepresenceof liquid
metalat theparticle interfaces, leavingsomeinterparticle residualporosity. Thus, thepartialmelting
mechanism,whereincompletemeltingof thepowder isavoided,canbeeffectivelyusedtoproduce
complex shapedporous structures [80]. Partialmelting of the powder surface could also lead to
formationofpartiallymoltenzoneswithineachparticleasaresultofdifferentmeltingtemperatures
of thephasespresent inmagnesiumalloys, affecting themicrostructureandmechanicalproperties
of SLMprocessed samples. Comparisons canbedrawn to selective laser surfacemelting (SLSM)
process,whereinapplicationof lower laserenergy input leads tomeltingof just thesecondaryphases
withoutaltering thepropertiesof theMgα-matrix, causingchanges in thephasemorphologyand
distribution[81].
Weietal. [61] investigatedtheroleofSLMlaserprocessingparametersonthe formabilityand
densificationbehaviourofAZ91Dalloytooptimize theprocessingwindowtoobtainpartswithhigher
densityandlowerporosity. Theresultsareextractedfromthepublishedgraphs to thebestpossible
accuracyandarereported inTable4,whichshowstheeffectofvariation inscanningspeedandhatch
spacingontherelativedensitiesof theAZ91Dparts formed. Itwasobservedthat therelativedensities
of thepartsdecreasedwith increase inboth the scanning speedandhatch spacings. Ataconstant
laserpower (p=200W),decreasing the scanningspeedcauseda longerdwelling timeof the laser
beamonthesurfaceof themoltenpool, therebyboosting the laser energydensitydelivered to the
powderbedresulting inbetterdensification[82].Hatchspacingwhich isalsocalled“scanspacing”
isanother importantparameter thatdetermines thedegreeofoverlapof the laserspotwhenanew
laser linescansover thepreviouslyscannedline. Thehatchspacing isusuallychosen insuchaway
that it varies between the halfwidth and the fullwidth ofmelt pool to ensure good bonding of
the adjacent tracks [28]. Decreasing thehatch spacing increased thepart’s density asflowingand
spreadingof the liquidwas increasedwhenthescan lineswerebroughtcloser tooneanother.Also,
whenthehatchspacingmore thanthespotsizeof the laserbeam(100μm)waschosen,overlapping
was found to reduceasadjacentmelt linesdidnot fuse together completely resulting in increased
porosity.Maximumdensificationof99.52%wasachievedundera lowerscanningspeedof0.33m/s
andahatchspacingof90μm.Energydensityof166.7 J/mm3wassufficient tobreakupanysurface
oxide layers formed toproducealmost fullydense (>99.5%)AZ91Dparts. Near full densification
levelsachievedin this studycanalsobeattributedto thestrict controlofconcentrationsofbothH2O
andO2below50ppminthebuildchamber,asnopeakscorrespondingtoMgOandAl2O3were found
intheXRDpatternsof theSLMedsamplebuiltatdifferentenergyinputs (Figure4). Similar results
wereobservedforZK60alloys [62],whentheeffectofscanningspeedonpartdensitywas investigated
with laserpower, layer thickness,hatchspacingandlaserspotsizeheldatconstantvaluesof200W,
20μm,80μm,and150μm,respectively.Whenthescanningspeedwas increasedfrom100mm/sto
900mm/s, itwasobservedthatrelativedensityof thepartpeakedwithavalueof94.05%at300mm/s.
At100mm/s,severevaporizationandburningoutof themetalpowderswasobserved, leavingan
ablatedpitonthesubstratesurface, resulting in terminationof theprocess.Atscanningspeedshigher
12
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie