Seite - 23 - in 3D Printing of Metals
Bild der Seite - 23 -
Text der Seite - 23 -
Metals 2017,7, 2
Figure 12. Typicalmicrostructural imagesof laser-meltedmagnesiumunder, (a) continuouswave
irradiationat1.27×109 J/m2and(b)pulsedwave irradiationat1.13×1012 J/m2 [57].
5.MetallurgicalDefects
5.1.Oxide Inclusions
Thepresenceofsurfaceoxidefilmonthepreceding layer impedes interlayerbondingwhich in
turn inhibits thedensificationmechanismandleads toballingas liquidmetalsgenerallydonotwet
oxidefilms in theabsenceofachemical reaction. Incombinationwith thermalstresses,poor interlayer
bondingcanalsocausedelaminationofSLMprocessedparts. Similar to thecastingprocessaspointed
outbyCampbell [103], oxidemayget into themeltpooleitherviaalloyingaddition into themetal
powderduringprimaryprocessingor air/gas entrapmentvia surface turbulentflowduringSLM
processing.Also,as thevaporizationofalloyingelements in thescantracks isnotuniformwhile the
scantrackpositionsvarywith time, rapidlyfluctuatingscantracks tendtoentraptheshieldinggasor
evenairwhichmaycontain tracesofoxideparticles.Consequently, thesurfaceof the liquidmetal in
themeltpool thenbecomeoxidizedto formoxidefilmasaresultof theentrapmentofairorshielding
gas into themeltpool.
TheoxidationofametalMmayberepresentedby
M+O2→MO2 (3)
Thefreeenergyof formationδGof theoxide isgivenby
δG=−RT lnK (4)
whereR is thegasconstant,T is the temperature inKelvinandK is theequilibriumconstantgivenby
K=(PO2) −1 (5)
wherePO2 is thepartialpressureofoxygenwhenreaction (3) is at equilibrium. Formagnesiumat
700◦C,aPO2of10−54 atmorhigherwillgiveoxidationofmagnesium[104]. Thus, thermodynamically,
it shouldnotbepossible topreventoxidationof themagnesium. Since the formationofoxidefilms
cannot be avoided completely, the SLMprocessmust break up these oxides if fully dense parts
are tobe formed, and this iswhySLMfabricationofhighdensityparts requireshigh laserpower.
According toLouvis et al. [105], theoxidefilmon theupper surfaceof thepool evaporatesunder
a laserbeam.Marangoni forces that stir thepoolare themost likelymechanismbywhichtheseoxide
filmsaredisrupted,allowingfusionto theunderlying layer.However, theoxidesat thesidesof the
pool remain intact and, thus, create regions ofweakness andporosity, as thepool fails towet the
surroundingmaterial. Therefore, further researchon theSLMofmagnesiumshouldbeprimarily
23
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie