Seite - 38 - in 3D Printing of Metals
Bild der Seite - 38 -
Text der Seite - 38 -
Metals 2017,7, 2
135. Xin, Y.; Hu, T.; Chu, P. Invitro studies of biomedical magnesium alloys in a simulated physiological
environment:Areview.ActaBiomater. 2011,7, 1452–1459. [CrossRef] [PubMed]
136. Rettig,R.;Virtanen,S.Time-dependentelectrochemicalcharacterizationof thecorrosionofamagnesium
rare-earthalloy insimulatedbodyfluids. J.Biomed.Mater. Res.A2008,85, 167–175. [CrossRef] [PubMed]
137. Martin,R.Porosityandspecificsurfaceofbone.Crit. Rev. Biomed. Eng. 1983,10, 179–222.
138. Bentolila,V.;Boyce,T.;Fyhrie,D.;Drumb,R.;Skerry,T.;Schaffler,M. Intracortical remodeling inadult rat
longbonesafter fatigue loading.Bone1998,23, 275–281. [CrossRef]
139. Prendergast, P.;Huiskes,R.Microdamageandosteocyte-lacuna strain inbone: Amicrostructural finite
elementanalysis. J.Biomech. Eng. 1996,118, 240–246. [CrossRef] [PubMed]
140. Wang,X.;Ni,Q.Determinationofcorticalboneporosityandporesizedistributionusinga lowfieldpulsed
NMRapproach. J.Orthop. Res. 2003,21, 312–319. [CrossRef]
141. Kufahl,R.H.;Saha,S.Atheoreticalmodel forstress-generatedfluidflowinthecanaliculi-lacunaenetwork
inbonetissue. J.Biomech. 1990,23, 171–180. [CrossRef]
142. Zardiackas,L.D.;Parsell,D.E.;Dillon,L.D.;Mitchell,D.W.;Nunnery,L.A.;Poggie,R.Structure,metallurgy,
andmechanicalpropertiesofaporous tantalumfoam. J.Biomed.Mater. Res. 2001,58, 180–187. [CrossRef]
143. Lefebvre, L.-P.; Banhart, J.; Dunand, D. Porousmetals andmetallic foams: Current status and recent
developments.Adv. Eng.Mater. 2008,10, 775–787. [CrossRef]
144. Yan,C.;Hao,L.;Hussein,A.;Young,P.; Raymont,D.Advanced lightweight316Lstainless steel cellular
latticestructures fabricatedviaselective lasermelting.Mater.Des. 2014,55, 533–541. [CrossRef]
145. Nakajima,H.Fabrication,propertiesandapplicationofporousmetalswithdirectionalpores.Prog.Mater. Sci.
2007,52, 1091–1173. [CrossRef]
146. Evans,A.G.;Hutchinson, J.W.;Fleck,N.A.;Ashby,M.;Wadley,H.The topologicaldesignofmultifunctional
cellularmetals.Prog.Mater. Sci. 2001,46, 309–327. [CrossRef]
147. Bose,S.;Vahabzadeh,S.;Bandyopadhyay,A.Bonetissueengineeringusing3Dprinting.Mater. Today2013,
16, 496–504. [CrossRef]
148. Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524. [CrossRef]
[PubMed]
149. Challis,V.J.;Xu,X.;Zhang,L.C.;Roberts,A.P.;Grotowski, J.F.; Sercombe,T.B.Highspecificstrengthand
stiffnessstructuresproducedusingselective lasermelting.Mater.Des. 2014,63, 783–788. [CrossRef]
150. Liu,Y.; Li, X.; Zhang, L.; Sercombe, T. Processing andproperties of topologically optimisedbiomedical
Ti-24Nb-4Zr-8Snscaffoldsmanufacturedbyselective lasermelting.Mater. Sci. Eng.A2015,642, 268–278.
[CrossRef]
151. Attar, H.; Löber, L.; Funk, A.; Calin,M.; Zhang, L.; Prashanth, K.; Scudino, S.; Zhang, Y.S.; Eckert, J.
Mechanical behavior of porous commercially pureTi andTi-TiB compositematerialsmanufacturedby
selective lasermelting.Mater. Sci. Eng.A2015,625, 350–356. [CrossRef]
©2016bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
38
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie