Seite - 40 - in 3D Printing of Metals
Bild der Seite - 40 -
Text der Seite - 40 -
Metals 2016,6, 284
particularly for tensilepropertiesofmetalAMTi64,arecomparable to thoseofwroughtmaterialand
muchbetter than itsas-cast form[12,13].However, therearestillvery limitedstudies involved in their
wearproperties thatarecritical forsomespecificapplicationsunderwearandfrictionconditions [14].
Asknown,Ti64possessespoorwear resistanceunderdryslidingdue to lowprotectionexertedby
tribo-oxides formedat the surface [15,16]. Therefore, it is imperative to studyonwearbehaviorof
AMTi64partsandknowtheirwearproperties incomparisonwith thecounterpartsmanufacturedvia
conventionalmethods. Inourpreviousworkspublishedelsewhere [5,6,17–21], themicrostructureand
mechanicalpropertiesof theEBM-builtTi64partshavebeensystematicallystudied. Thepresentwork
aimsat investigating thewearpropertiesofEBM-builtTi64partswithvarious thicknessesandmaking
a comparative studyagainst commercially as-cast Ti64 sample. It is supposed tobe an important
supplementarystudytoachievebetterunderstandingforpracticalapplicationsofEBM-manufactured
Ti64parts.
2. ExperimentalSection
2.1.Materials,Fabrication, andSamplePreparation
All theEBM-built sampleswere fabricatedviaanArcamA2XX(ArcamAB,Mölndal,Sweden)
EBMmachine,whichhasabuildchamberofΦ420mm×380mm.Aschematicdiagramofa typical
EBMmachine is illustrated inFigure1. Thepowderused in thisprocesswasTi-6Al-4VELI (Grade23)
(BatchNo. 877)suppliedbyArcamAB,andwasmainlyspherical inshape,asshowninFigure2a. The
sphericalnatureof thepowderassuresgoodfollowabilityandthusconsistency in thespreadingof
powderduringraking. Thepowderhadasizedistributionrangingfrom45to105μm,while themean
particle sizewas61.8μm±23.8μm.AsummaryonthepowdersizedistributionofTi64usedduring
fabrication is asdepicted inFigure2b. Thenominal compositionof theTi64powder is as follows:
6.0Al-4.0V-0.03C-0.1Fe-0.1O-0.01N-<0.003HandthebalancebeingTi (wt.%). TheEBM-built samples
ofvarying thicknessesof0.5mm,1mm,5mm,10mm,and20mmby100mminlengthand30mmin
heightareshowninFigure3a. Theywere termed0.5mm,1mm,5mm,10mm,and20mmsamples,
respectively. Thebuildchamberwasunderacontrolledvacuumenvironmenthavingatemperature
rangeof600 to650 ◦C.Thesampleswerebuiltona210mm×210mmstainlesssteel (SS)startplate.
ThesamplesweresubsequentlyremovedfromtheSSstartplateviaknockingonthebacksideof the
SSplateandcleanedwith theuseof thepowderrecoveringsystem(PRS).PRSprimarily functionedas
agritblasterwhereblastingmedia (Ti64)wereacceleratedtowards thesamplesurfacewith theaidof
highvelocitycompressedairwith theaimtoremoveanyresidualpartially-sinteredandunmelted
powderparticlessurroundingthesamples’ surface. Theas-cast samplesweresupplied in theformofa
rodbyTitanEngineeringPte. Ltd. (Singapore,Singapore), cast to thespecificationASEMB348GR5
andhadadimensionofΦ25.4mm×1500mm.TheEBM-built sampleswereslicedfromthemiddle
section (X–Zplane) intosquaresof20mm×20mm,while theas-cast samplewassliced intoadiscof
Φ25.4mm×5mm.All thesampleswere thenhotmountedwithphenolicpolymerandsubsequently
polishedtoamirror-likefinish.
40
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie