Seite - 49 - in 3D Printing of Metals
Bild der Seite - 49 -
Text der Seite - 49 -
Metals 2016,6, 284
movementduringtheslidingprocessandthusactedasaprotection layerbetweenthecounterball
andTi64sample, therebypreventingdirectmetal-metal contact, leadingtoa lowerwearrate.
Figure12.Schematic road-maponthe formationof tribo-layerduringslidingwearofTi64samples.
4. Summary
Duetothefastcoolingrate thatwasinherently involvedinatypicalEBMprocess, itwasobserved
that the thinnerEBM-built Ti64 samples (0.5mmand1mmthick) hadmuchfinermicrostructure
andhighermicrohardness as compared to the as-cast form. However, they showed similarwear
characteristics, regardlessof thedifferentmicrostructureswithintheEBM-builtandtheas-castsamples.
Thehigherhardnessof theEBM-built samplesresulted in theirhigherwearresistanceandintrinsically
lowerwearrate. It isworthnotingthatallof thewearratesobtainedinourexperimentwere lower
ascompared to the theoretical estimation. It couldbedue to themildwearconditions (e.g., avery
lowslidingspeedof2 cm/s)and the formationof the tribo-layer that remainedon thewear track,
actingasaprotectionbarrierbetweenthecounterballandtheTi64substrate.Wecanconcludethat the
EBMprocess iscapableofmanufacturingTi64partswithsuperiorwearpropertiescomparedto the
as-cast counterparts.
Acknowledgments: The authors are grateful for financial support provided by A*Star Industrial Additive
ManufacturingProgram: WorkPackage3. Weacknowledge theuseof resources inSingaporeCentre for 3D
Printing(SC3DP) fundedbytheNationalResearchFoundation(NRF),Singapore.
AuthorContributions:W.Q.T.examinedthespecimensandwrote themainpaper. X.T.designedtheexperiments
andfabricated theTi64samplesusingEBM.W.Q.T.,X.T.,P.W.andM.L.S.N.performedspecimenpreparationand
characterization. E.L.andS.B.T. supervisedtheproject.Allauthorsdiscussedtheresultsandfinalizedthepaper.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Frazier,W.E.Metal AdditiveManufacturing: AReview. J.Mater. Eng. Perform. 2014, 23, 1917–1928.
[CrossRef]
2. Gibson, I.;Rosen,D.W.;Stucker,B.AdditiveManufacturingTechnologies; Springer: Berlin,Germany,2010.
3. Chua,C.K.;Leong,K.F.3DPrintingandAdditiveManufacturing: Principles andApplications;WorldScientific:
Singapore,2015.
4. Boyer, R.; Welsch,G.; Collings, E.W.Materials PropertiesHandbook: TitaniumAlloys; ASM International:
MaterialsPark,OH,USA,1994.
5. Tan, X.P.; Kok, Y.; Toh, W.Q.; Tan, Y.J.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Leong, K.F.;
Chua,C.K. Revealingmartensitic transformation andα/β interface evolution in electron beammelting
three-dimensional-printedTi-6Al-4V.Sci. Rep. 2016,6, 26039. [CrossRef] [PubMed]
49
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie