Seite - 94 - in 3D Printing of Metals
Bild der Seite - 94 -
Text der Seite - 94 -
Metals 2016,6, 280
Figure9.Anexampleofpartsdisassembly.
3.2.1. FlangeFramewithTorque
Theflange often bears the torsionalmoment from its bolt holes. According to the following
conditions, theoptimaldesignof the frameworkof thestructurewascarriedout.
(1) Objective function:minimumstructuremass
(2) Condition: flangebears torsion load
(3) Boundaryconditions: theboltholesarefixedandthe inner surfaceof theflange isapplied to
the torque
(4) Designspace: brownregion ingraph
(5) Minimumthickness: 0.006m
(6) Designconstraints:meetingthestrengthrequirementswithminimummass
Accordingto the topologyoptimizationconditionsabove, theoriginalpartmodelwasdefinedas
showninFigure10a. The frameworkobtainedbytopologyoptimizationcanbeseen inFigure10b.
Thisnewstructurewas taken intoANSYSWorkbenchtoanalyze its strength. Thestressdistribution
onthestructurebecameuniformafteroptimization,asshowninFigure10c.
Figure10. Theoriginalflangemodel (a), flange frameworkobtainedby topologyoptimization (b),
stressdistributionofflangeframe(c).
The comparison of the stress distribution density before and after optimization is shown in
Figure11.AscanbeseenfromFigure11, the twostructureshavethesamemaximumstressandthe
average stressof theoptimizedstructurebecame larger. Thus, theutilization ratioof the structure
was improved.
94
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie