Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Seite - 120 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 120 - in 3D Printing of Metals

Bild der Seite - 120 -

Bild der Seite - 120 - in 3D Printing of Metals

Text der Seite - 120 -

Metals 2017,7, 64 316L SS, in particular, is highly attractive for biomedical andmarine applications due to its excellent corrosionresistanceandrelativelysuperiorductilitycompared toothermaterials [14–16]. Current researchonAMof316LSS isnotonly limitedtosingle-materialprocessing,butalsoextends to composites. For example, AlMangour et al. [17] studied the SLMof TiC-reinforced 316L SS matrixnanocompositesandfoundthat theadditionoffineTiCparticles remarkably improved the microhardness andwear performance of the fabricated parts. This is because of the increase in the densification level and the homogeneousmicrostructure distribution as a result of enhanced reinforcement/matrixwettability. Inaddition, studiesontheSLMofTiB2/316LSSnanocomposites were also carriedoutwithvarying results. For example, superior compressionyield strengthand ductilitywereobtainedwhenprocessing thisnanocompositewithoutahot isostaticpressing(HIP) post-processingdueto the formationofhomogenouslydispersedTiB2particles formingnanoscaled structures [18].However,HIPtreatmentwas foundtoreduce thehardnessandwearresistancedueto thehigh-temperatureannealingeffect [19].Nevertheless, theflexibilityofAMprocesses to fabricate suchcompositesprovidesapromisingfuture,especially forparts requiringcomplexgeometries. Although SLM is able tomanufacture almost fully dense parts (~98%–99%), the presence of residualporosity inSLM-fabricatedpartshindershigh-strengthandfatigueresistanceapplications[20]. Similar toconventionallymanufacturedparts, themechanicalpropertiesofcomponentsbuiltbySLM are influenced by the resultingmicrostructure andporosity profiles (size andmorphology) [1,21]. Hence, it is important to understand the microstructure and porosity formation and how their behaviour influences themechanical properties of the completed parts. Thus, this study aims to investigate themicrostructure,porositydistributionandmicrohardnessof316LSSparts fabricatedby SLM, inparticularbyusingtheadvancedX-raycomputedtomography(XCT) technique. 2.MaterialsandMethods Gas-atomised316LSSpowders (ConceptLaserGmbH,Lichtenfels,Germany)withdiameters ranging from15 to 40μmwere used in this study. The as-suppliedmaterial composition of this alloy is shown inTable 1. The lowP,CandS contents in 316LSS reduce the susceptibility of this material tosensitisation(grainboundarycarbideprecipitation), inwhichsensitisationcouldreduce themechanicalpropertiesof the fabricatedparts. Table1.Chemicalcomposition(wt.%)of316LSSpowdersusedin this study. Component Fe Cr Ni Mo Mn Si P C S wt.% Bal. 16.5–18.5 10.0–13.0 2.0–2.5 <2.0 <1.0 <0.045 <0.030 <0.030 AllAM316LSSsampleswere fabricatedbyusingConceptLaserM2LaserCusingSLMmachine (ConceptLaserGmbH,Lichtenfels,Germany) inan inertgasenvironment. Theprocessingparameters used in this studywere as follow: (i) laser power: 200W; (ii) scan speed: 1600mm/s; and layer thickness: 50μm.Thesampleswerebuiltusing the“island”scanstrategytoreduce theresidual stress in thecompletedparts (Figure1) [22,23]. In this study, three sampleswere fabricatedbySLMandone samplewasmadebyusing the conventionalwroughtmanufacturing(WM)technique. TheSLMsampleswerebuiltalongthez–axis (vertically). Foropticalmicroscopy, cube-shapedAMsamples (originally 8mm× 8mm× 8mm) were cut into 4mm× 4mmsquare cross-sections along the x–y, y–z and x–zplanesusing awire electricaldischargemachine. Theyare thenmountedonconductivebakelite,groundusing120,800, and1200gritsabrasivepapersandpolishedusing6μmand1μmdiamondpaste toobtainmirror-like surfacefinish. Inorder toreveal themicrostructures, thepolishedsampleswereetchedusingKalling’s No. 2reagent (50mLHCl,50mLethanol,2gcopperchloride for100mLofetchant) forapproximately 30s.OlympusBX41M-LEDopticalmicroscope (Tokyo, Japan)wasusedtoobserve themicrostructure onthemetallographicspecimens. 120
zurück zum  Buch 3D Printing of Metals"
3D Printing of Metals
Titel
3D Printing of Metals
Autor
Manoj Gupta
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Abmessungen
17.0 x 24.4 cm
Seiten
170
Schlagwörter
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals