Seite - 120 - in 3D Printing of Metals
Bild der Seite - 120 -
Text der Seite - 120 -
Metals 2017,7, 64
316L SS, in particular, is highly attractive for biomedical andmarine applications due to its
excellent corrosionresistanceandrelativelysuperiorductilitycompared toothermaterials [14–16].
Current researchonAMof316LSS isnotonly limitedtosingle-materialprocessing,butalsoextends
to composites. For example, AlMangour et al. [17] studied the SLMof TiC-reinforced 316L SS
matrixnanocompositesandfoundthat theadditionoffineTiCparticles remarkably improved the
microhardness andwear performance of the fabricated parts. This is because of the increase in
the densification level and the homogeneousmicrostructure distribution as a result of enhanced
reinforcement/matrixwettability. Inaddition, studiesontheSLMofTiB2/316LSSnanocomposites
were also carriedoutwithvarying results. For example, superior compressionyield strengthand
ductilitywereobtainedwhenprocessing thisnanocompositewithoutahot isostaticpressing(HIP)
post-processingdueto the formationofhomogenouslydispersedTiB2particles formingnanoscaled
structures [18].However,HIPtreatmentwas foundtoreduce thehardnessandwearresistancedueto
thehigh-temperatureannealingeffect [19].Nevertheless, theflexibilityofAMprocesses to fabricate
suchcompositesprovidesapromisingfuture,especially forparts requiringcomplexgeometries.
Although SLM is able tomanufacture almost fully dense parts (~98%–99%), the presence of
residualporosity inSLM-fabricatedpartshindershigh-strengthandfatigueresistanceapplications[20].
Similar toconventionallymanufacturedparts, themechanicalpropertiesofcomponentsbuiltbySLM
are influenced by the resultingmicrostructure andporosity profiles (size andmorphology) [1,21].
Hence, it is important to understand the microstructure and porosity formation and how their
behaviour influences themechanical properties of the completed parts. Thus, this study aims to
investigate themicrostructure,porositydistributionandmicrohardnessof316LSSparts fabricatedby
SLM, inparticularbyusingtheadvancedX-raycomputedtomography(XCT) technique.
2.MaterialsandMethods
Gas-atomised316LSSpowders (ConceptLaserGmbH,Lichtenfels,Germany)withdiameters
ranging from15 to 40μmwere used in this study. The as-suppliedmaterial composition of this
alloy is shown inTable 1. The lowP,CandS contents in 316LSS reduce the susceptibility of this
material tosensitisation(grainboundarycarbideprecipitation), inwhichsensitisationcouldreduce
themechanicalpropertiesof the fabricatedparts.
Table1.Chemicalcomposition(wt.%)of316LSSpowdersusedin this study.
Component Fe Cr Ni Mo Mn Si P C S
wt.% Bal. 16.5–18.5 10.0–13.0 2.0–2.5 <2.0 <1.0 <0.045 <0.030 <0.030
AllAM316LSSsampleswere fabricatedbyusingConceptLaserM2LaserCusingSLMmachine
(ConceptLaserGmbH,Lichtenfels,Germany) inan inertgasenvironment. Theprocessingparameters
used in this studywere as follow: (i) laser power: 200W; (ii) scan speed: 1600mm/s; and layer
thickness: 50μm.Thesampleswerebuiltusing the“island”scanstrategytoreduce theresidual stress
in thecompletedparts (Figure1) [22,23].
In this study, three sampleswere fabricatedbySLMandone samplewasmadebyusing the
conventionalwroughtmanufacturing(WM)technique. TheSLMsampleswerebuiltalongthez–axis
(vertically). Foropticalmicroscopy, cube-shapedAMsamples (originally 8mm× 8mm× 8mm)
were cut into 4mm× 4mmsquare cross-sections along the x–y, y–z and x–zplanesusing awire
electricaldischargemachine. Theyare thenmountedonconductivebakelite,groundusing120,800,
and1200gritsabrasivepapersandpolishedusing6μmand1μmdiamondpaste toobtainmirror-like
surfacefinish. Inorder toreveal themicrostructures, thepolishedsampleswereetchedusingKalling’s
No. 2reagent (50mLHCl,50mLethanol,2gcopperchloride for100mLofetchant) forapproximately
30s.OlympusBX41M-LEDopticalmicroscope (Tokyo, Japan)wasusedtoobserve themicrostructure
onthemetallographicspecimens.
120
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie