Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Seite - 126 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 126 - in 3D Printing of Metals

Bild der Seite - 126 -

Bild der Seite - 126 - in 3D Printing of Metals

Text der Seite - 126 -

Metals 2017,7, 64 energy is applied, resulting in spatter ejection [36]. In this study, spherical pores dominated the non-spherical ones, where rectangular-shaped poreswere visible only near the edges of the cut specimens. This indicates thatmostof theporositydefects in theSLMsampleswereduetogaspores duringthegasatomisationofthe316LSSpowders,similartotheworkcarriedoutbyTammas-Williams etal. [37]. Thegasporescouldbeproduceddueto thepresenceofmoistureorcontaminantsonthe surfaceof thepowderparticles [38]. TheseporescouldalsobeformedbythereactionsbetweenO2 andCwhicharepresent insmallamountsduringSLMprocessing,causingCOorCO2gasentrapment in theSLM-built parts [39]. Thenon-uniformporedistribution in thisprocess couldbe causedby oneof the followingfactors: (i) thevariationofsurfaceroughness [40]; and(ii) the layer-wisebuild manner of theAM[41]. Thevariation in surface roughness results in an inhomogeneouspowder distribution that leads to an inconsistentmelt flowandanunstablemoltenpool in the successive layers [42]. These, in turn, contribute to thediscontinuities in the scan track formation, andhence the irregularporedistributionobtained in this study.Nevertheless, thesedefects (poresandvoids) aredetrimental to thequality ofAM-fabricatedmetal parts, especially as they reducemechanical propertiessuchasyieldandtensile strength. 3.3.Microhardness Theresultsof theVickersmicrohardness (HV) testswereevaluatedby: (i) comparingHVvalues ofSLMsamples fordifferentcutplanes (x–y,x–zandy–z)asshowninFigure10;and(ii) comparing HVvaluesofSLMandWMsamples (Figure11). Figure10.Averagemicrohardness (HV)values forSLMspecimens in thex–y,x–zandy–zplanes. FromFigure10, it canbeobservedthat theaveragemicrohardnessvalues for theSLMspecimens inx–y,x–zandy–zplanesare262HV,237HV,and239HV, respectively. Themicrohardnessof the SLMsamplesat thex–yplane(scandirection)wasthehighestcomparedtotheother twoplaneswhich hadsimilarbutconsiderably lowerHVvalues. Thediscrepancyof themicrohardness ineachplane indicatesanisotropyinSLM,whichis typicalofAMprocesses formetalcomponents [28,43–45]. This is becauseofthelayer-wisebuildapproachwiththe“island”scanstrategyinAMprocesses,whichmeans localised melting of powder particles that often results in non-homogeneous morphologies and anisotropicgrainstructures [46,47].However, thesimilaraverageHVvalues in thex–zandy–zplanes indicatedamoreuniformmicrohardnessdistribution in thebuilddirection compared to the scan directionfor theSLM-processedsamples. Figure11showstheaveragemicrohardnessvaluesof the SLMsamples (228HV),whichwerehigher thanthoseof theWMsample (192HV).This is consistent withvarious literature, inwhichthemicrohardnessofAM316LSSparts is typicallyhigher thanthat ofconventionallymanufactured316LSSparts [28,48].Highermicrohardness inAM316LSSsamples 126
zurĂĽck zum  Buch 3D Printing of Metals"
3D Printing of Metals
Titel
3D Printing of Metals
Autor
Manoj Gupta
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Abmessungen
17.0 x 24.4 cm
Seiten
170
Schlagwörter
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals