Seite - 136 - in 3D Printing of Metals
Bild der Seite - 136 -
Text der Seite - 136 -
Metals 2017,7, 113
2.4.2. ProductionofTailoredLaser-CladdedBlanks
As sheet metal, the aluminum alloy EN AW 6082 was chosen, as in the first demonstrator.
Circular blanks of 2mmthickness and 76mmdiameterwere cut. As powder for laser cladding,
thecastalloyAlSi12wasused.ATrumpfTruLaserCell7040 (TRUMPFGmbH&Co.KG,Ditzingen,
Germany) operatedwith aCO2 laserwith amaximumpower of 5000Wwas used for cladding.
Thesheetmetalblankwascooledduringtheweldingprocessusingawater-cooledaluminumplate,
whichwaspositionedbelowthesample.At thesametime, thespecimenwasheld inplacebyafixture
systemtoreduce theheat-inducedwarping.Claddingswithadiameterof20mmandathicknessof
0.75mmwereprogrammed. Thefinalheightof thecladdingrelative to thebasesheetwas0.7mmon
average.Alaserpowerof3400W,a feedrateof400mm/min,apowdermassflowrateof1.6g/min
andamixtureofheliumandargonasshieldinggaswereusedasprocessparameters. Threecladding
strategieswere investigated(Figure6).
Figure6. Investigatedcladdingstrategies forcreatingadisc-shapedreinforcement. (a) straightpathof
the laserbeamwithparallel offset; (b) straightpathof the laserbeamwithparallel offset+circular
outline; (c) spiralpathof laserbeam.
2.4.3. LightOpticalMicroscopy(LOM)
Laser-claddedspecimenswerecutandcrosssectionswereprepared. Thesampleswereground
flatwithsuccessivelyfinergradesofSiCpaperandthendiamondpolisheduntil alldeepscratches
fromgrindingwereremoved(9μm/for10min,3μm/forabout30min,1μm/for5min). In thefinal
stage, the sampleswereetchedwithKeller reagent (3mLHCl+5mLHNO3+1mLHF+190mL
water) forrevealingthe ‘weldmicrostructure’. Themicroscopicexaminationof theetchedsampleswas
conductedusinganopticalmicroscopefromLeicaMikrosystemeVertriebGmbH,Wetzlar,Germany.
2.4.4.Hole-FlangingExperiments
Hole-flangingoperations insheetmetalpartsare typicallyperformedusingapunchthatdeforms
apiercedsheetmetal intoamatrix, seeFigure7a. Thesheetmetal is clampedusingablankholder.
In the case consideredhere, the areadeformedby theflangingoperation is thickenedusing laser
cladding. Thespecimengeometry is showninFigure7b.
Table2givesanoverviewof theexperimental tests thatwereperformed. Inadditiontosamples
withacladdingof0.7mmonspecimenswith2.0mmthickness,monolithic sheetmetalof 2.0mm
and2.5mmthicknesswas tested. The thicknessof the incladspecimenscorresponds to theclearence
betweenpunchandmatrice for t=2.5mmand is smaller in thecaseof t=2mm. For thecladded
specimens,aslightly larger thicknesswaschosentoexertpressureduringforming,hencedecreasing
thechance todamagetherelativelybrittlecladmaterial.
136
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie