Seite - 22 - in Advanced Chemical Kinetics
Bild der Seite - 22 -
Text der Seite - 22 -
developcertainmethods for improvingfunctionalityof somemolecules inacell.Manyproblems
intheoreticalandexperimentalbiology/chemistry involvethesolutionofthesteady-statereaction
diffusionequationwithnonlinear chemical kinetics. Suchproblemsalsoarise in the formulation
ofsubstrateandproductmaterialbalances forenzymes immobilizedwithinparticles [1,2], in the
descriptionofsubstrate transport intomicrobialcells [3–5], inmembranetransport, in thetransfer
ofoxygentorespiringtissue [6,7],andintheanalysisofanyartificialkidneysystem[8].
To impose the functionality of somemolecules in a cell, amathematicalmodel of suchmeta-
bolic systems must be constructed and simulated. Most of the dynamical systems can be
approximatedbyvarious types ofdifferential and integral equations involving finite number
ofvariablesandparameters.Thus, the futurebehaviorof thesystemcanbepredicted ifmodel
kineticsparameters and initial statesof thevariables areavailable. Inparticular, ordinaryand
partial differential equations (ODEs and PDEs) are popular in modeling of the metabolic
pathwaysorenzymekinetics.
Releasing enzyme-substrate reactions under single-molecule kinetics was reported by Shlomi
et al. [9].An integral equationmethodwithMichaelis-Mentenkinetics to solvenonlineardiffu-
sionproblems in spherical coordinateswas statedbyTosakaandMiyale [10].Maalmi et al. [11]
reportednumericalandsemianalytical solutionsofnonlinearequations,whichcovereddiffusiv-
ity, size, bulk concentrationof reactant, binding constant ofMichaelis-Mentenkinetics, and site
reactivityvalues.Merchant [12] stated theM-MdecayreactiontermsandtheGray-Scott scheme
along with the semianalytical method to nonlinear reaction-diffusion systems. Indira and
Rajendran [13] described a homotopy perturbation method to obtain substrate and product
concentrationswithintheenzymatic layers.RemovalofsubstratefromMichaelis-Mentenkinetics
governed the extravascularpartition inwhich the analytical solution for the steady-state condi-
tionwasinvestigatedbyBucoloandTripathi [14].DangDoandGreenfield[15]utilizedthefinite
integral transformmethod to elucidate the problem based on the nonlinear reaction diffusion
coupledwith the chemical kinetics of ageneral shape solid.Chapwanyaet al. [16] conveyedan
epidemiologicalmodelwith theMichaelis-Menten contact rate formulation to investigatevaria-
tions in the enzymekineticswith a simple susceptible infected recovered (SIR)model.Napper
[17] proposed theMichaelis-Mentenkineticsmodel to investigate theoxygen transport toheart
tissue.Regalbutoetal. [18]presentedananalyticalmethodologyforobtainingsolutionsbasedon
themaximumprinciple tononlinear reaction-diffusionboundaryvalueproblems.
Rajendran and Saravanakumar [19] discussedmediated bioelectrocatalysis in order to build
bioreactors,bio fuel cells, andbiosensors.
Due to the difficulties in solving nonlinear differential equations in enzyme kinetics, some
recent advanced analytical and numerical simulation techniques are used to solve the prob-
lems in chemical kinetics. Thus, in this review, all analytical andnumericalworks in enzyme
kineticsare summarized.
2.Reactiondiffusionsystems
Reaction diffusion system is a mathematical model based on how the concentration of sub-
stances/products isdisseminatedoverspacechangesunder the influenceofdiffusionandalocal
Advanced Chemical
Kinetics22
zurück zum
Buch Advanced Chemical Kinetics"
Advanced Chemical Kinetics
- Titel
- Advanced Chemical Kinetics
- Autor
- Muhammad Akhyar Farrukh
- Herausgeber
- InTech
- Ort
- Rijeka
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-953-51-3816-7
- Abmessungen
- 18.0 x 26.0 cm
- Seiten
- 226
- Schlagwörter
- Engineering and Technology, Chemistry, Physical Chemistry, Chemical Kinetics
- Kategorien
- Naturwissenschaften Chemie