Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Advanced Chemical Kinetics
Seite - 100 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 100 - in Advanced Chemical Kinetics

Bild der Seite - 100 -

Bild der Seite - 100 - in Advanced Chemical Kinetics

Text der Seite - 100 -

10−4 M (4–20 ppm) RuH2(N2)(PPh3)3, 1 M NaOH, and an intense light source at 150°C [5]. A mechanism as depicted in Figure 2 was proposed. In 2013, Beller disclosed a procedure for homogeneously catalysed aqueous-phase reforming type conversion of MeOH/H2O mixtures to 3H2 and CO2 (or other C1 residuals, such as carbon- ate, see Figure 7) [15]. Using 1.6 ppm of [RuHCl(PNPiPr)CO] in MeOH with 8.0 M KOH at 95.0°C afforded a TOF1h of 4719 h −1. Furthermore, using 19 ppm of [RuHCl(PNPPh)CO] with respect to MeOH in a 9:1 (v/v) MeOH/H2O mixture afforded a TOF1h of 63 h−1 at 65°C. As a note, the TOF was counted in such way that a complete reaction of MeOH/H2O mixtures to CO2 and 3H2 sums as three turnovers. This was done because all three reactions depicted in Figure 7 occurs simultaneously, rendering any quantitative kinetic discrimination between them unpractical. The system turned out to be very robust, with a TON over 350,000 and reaction time exceed- ing 23 days when using 1 ppm catalyst loading with respect to MeOH of [RuHCl(PNPiPr) CO] in a refluxing 9:1 (v/v) MeOH/H2O solution containing 8.0 M KOH. Moreover, after the 23 days a 27% yield of full MeOH reforming was achieved (based on H2 evolution and yield based on H2O as the limiting factor. The yield is 12% with respect to MeOH). When using 150 ppm, a CO2-based yield of 43% was reached within 24 h (yield based on H2O as the limit- ing factor. The yield is 19% with respect to MeOH). It was also demonstrated that a continuous production of a 3:1 H2/CO2 gas mixture, and hence full MeOH reforming, can be achieved by employing 250 ppm catalyst loading with respect to MeOH of the [RuHCl(PNPPh)CO] in a refluxing 4:1 (v/v) MeOH/H2O solution containing 0.1 M NaOH. After an initiation time of approximately 5–6 h, the expected 3:1 ratio of H2 and CO2 was observed in the gas mixture. In addition, the pH dropped from 13 to approximately 10 during the first 4 h. It was suggested that during this initiation time, the hydroxide was reacting with formic acid and CO2 leading to an eventual equilibrium between hydroxide/(bi) carbonate/formate as the C1 residuals. The catalyst activity was depending on a range of factors. Besides the reaction temperature the pH, base additive, and catalyst loading all influenced the activity. As such, a higher pH and lower catalyst loading promoted an increased turnover frequency. The latter is in agreement Figure 7. Aqueous MeOH AAD to 3H2 and C1 residuals by Beller. Best results: TOF = 4719 h−1. TON > 350,000. Yield = 43%. Stable for more than 23 days. Advanced Chemical Kinetics100
zurück zum  Buch Advanced Chemical Kinetics"
Advanced Chemical Kinetics
Titel
Advanced Chemical Kinetics
Autor
Muhammad Akhyar Farrukh
Herausgeber
InTech
Ort
Rijeka
Datum
2018
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-953-51-3816-7
Abmessungen
18.0 x 26.0 cm
Seiten
226
Schlagwörter
Engineering and Technology, Chemistry, Physical Chemistry, Chemical Kinetics
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Advanced Chemical Kinetics