Seite - 2 - in Algorithms for Scheduling Problems
Bild der Seite - 2 -
Text der Seite - 2 -
Algorithms 2018,11, 18
Nevertheless, electricity ishardtostoreeffectively,andthus,mustbeproducedanddeliveredto its
customersatonce [7]. Inaddition, theelectricitydemandisalwaysuneven,which leads toan increase
ingeneratingcostowingto theutilizationofbackuppower facilitiesduringpeakhours [8]. Inorder
tomaintainbalancebetweenelectricitysupplyanddemand,electricityprovidersusually implement
demand-sidemanagementprograms[9],whichareanessential componentof realizingthegoalsofa
smartgridandrationalizingtheallocationofpowerresources [10].
Oneof thedemand-sidemanagementprograms is time-of-use (TOU)electricity tariffs,which
have beenwidely used around theworld.Usually, a commonTOU tariff scheme can bedivided
into three typesofperiods: off-peak,mid-peak, andon-peakperiods.Thebasicnatureof theTOU
schemeis that theretailpricessetbyelectricityprovidersvaryhourly throughout thedayaccordingto
theamountofelectricitydemands;whenthere isan increase indemand, theelectricitycostgoesup
correspondingly,andviceversa[11].ThepracticeofTOUelectricitytariffsnotonlyprovidessignificant
opportunities for the industrial sector toenhanceenergyefficiency,butalsoavoidspowerrationing
duringon-peakperiods,andimproves thestabilityof thepowergrid [7].
Using low-energyequipmentandimprovingtheefficiencyofproductionmanagementare two
importantmethodstosaveenergy[12].Asawidelyusedproductionmanagementmethod,scheduling
caneffectivelycontrol energyconsumption [13],whichbringsa lowercostofoperation. However,
thestudiesaboutenergy-savingschedulingarestill limited[14].Overrecentyears,energy-efficient
schedulingproblemshavegraduallyarousedtheattentionofscholars. Toachieve thegoalofenergy
savingduringtheproductionprocess, someresearchershave investigatedtheproblemswithvarious
energy-efficientmechanismstoreduceelectricitycostsbyminimizingoverall energyconsumption,
suchasspeed-scaling[15–18]andpower-down[19–21],whileothershavestudiedtheproblemsfrom
theperspectiveofTOUelectricity tariffs,whichhasbecomeafrontier issue in thisfield.
AsforresearchingschedulingproblemsunderTOUelectricity tariffs, therehasbeenagrowing
interest recently. Considering bothproduction and energy efficiency, Luo et al. [22] proposed an
antcolonyoptimizationmeta-heuristicalgorithmforhybridflowshopschedulingproblemsunder
TOUelectricity tariffs. Zhanget al. [12] studiedaflowshopschedulingproblemwithproduction
throughputconstraints tominimizeelectricitycostandthecarbonfootprint simultaneously. Sharma
etal. [23]presentedasocalled“econological scheduling”model foraspeed-scalingmulti-machine
schedulingproblemaimedtominimize theelectricitycostandenvironmental impact.Moonetal. [24]
examinedtheunrelatedparallelmachineschedulingproblemunderTOUelectricity tariffs tooptimize
theweightedsumofmakespanandelectricitycost.Dingetal. [7]andCheetal. [25]addressedasimilar
parallelmachineschedulingproblemunderTOUelectricity tariffs tominimize the totalelectricitycost.
Theformerdevelopedatime-interval-basedmixed-integer linearprogramming(MILP)modelanda
columngenerationheuristicalgorithm.The latter improvedthe formermodelbyprovidinga linear
programmingrelaxationandatwo-stageheuristicalgorithm.
Single machine scheduling problems are of great significance both in theory and practice.
Ononehand, therearemanysinglemachineschedulingproblemsin thereal industrial environment.
Forexample,aComputerNumericalControl (CNCforshort)planerhorizontalmillingandboring
machinecanberegardedasasinglemachine.Ontheotherhand, theresearchresultsandmethodsof
singlemachineschedulingproblemscanprovidereferenceforotherschedulingproblems,suchasflow
shop, jobshop,andparallelmachineschedulingproblems.Forsinglemachineschedulingproblems
underTOUelectricity tariffs,Wangetal. [26] investigatedasingle-machinebatchschedulingproblem
tominimize themakespanandthe totalenergycosts simultaneously.Considering theTOUelectricity
tariffsandthepower-downmechanism,Shroufetal. [27]proposedamodel thatenables theoperations
managertodeterminethe“turningon”time,“turningoff”time,andidletimeatmachinelevel, leading
toasignificant reduction inelectricitycostbyavoidingon-peakperiods.Gongetal. [28]developeda
mixed integer linearprogrammingmodelandagenetic algorithmfor thesameproblem, reducing
electricitycostandgreenhousegasemissionseffectivelyduringpeaktimeperiods.Withoutconsidering
apower-downmechanism,Fangetal. [29] studiedthesinglemachineschedulingproblemunderTOU
2
zurück zum
Buch Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
- Titel
- Algorithms for Scheduling Problems
- Autoren
- Frank Werner
- Larysa Burtseva
- Yuri Sotskov
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-120-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 212
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorien
- Informatik
- Technik