Seite - 31 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 31 -
Text der Seite - 31 -
Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles
coupling. Angew. Chem. Int. Ed. 51, 6373–6377. doi: 10.1002/anie.2012
01816
Louie,A.(2010).Multimodality imagingprobes:designandchallenges.Chem.Rev.
110,3146–3195.doi:10.1021/cr9003538
Lu, J., Jackson, J., Gleave, M., and Burt, H. (2008). The preparation and char-
acterization of anti-VEGFR2 conjugated, paclitaxel-loaded PLLA or PLGA
microspheres for the systemic targeting of human prostate tumors. Cancer
Chemother.Pharmacol.61,997–1005.doi:10.1007/s00280-007-0557-x
Ma, X., Zhao, Y., and Liang, X. J. (2011). Theranostic nanoparticles engi-
neered for clinic and pharmaceutics. Acc. Chem. Res. 44, 1114–1122. doi:
10.1021/ar2000056
Maldiney, T., Richard,C., Seguin, J.,Wattier,N., Bessodes,M., andScherman,D.
(2011). Effect of core diameter, surface coating, andPEG chain length on the
biodistributionofpersistent luminescencenanoparticles inmice.ACSNano5,
854–862.doi:10.1021/nn101937h
Marradi, M., Chiodo, F., Garcia, I., and Penades, S. (2013). Glyconanoparticles
asmultifunctional andmultimodal carbohydrate systems.Chem. Soc. Rev. 42,
4728–4745.doi:10.1039/c2cs35420a
Martinez-Avila, O., Hijazi, K., Marradi, M., Clavel, C., Campion, C., Kelly, C.,
et al. (2009). Gold manno-glyconanoparticles: multivalent systems to block
HIV-1 gp120 binding to the lectin DC-SIGN.Chemistry 15, 9874–9888. doi:
10.1002/chem.200900923
Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C.,
Mikulec, F. V., et al. (2000). Self-assembly of CdSe-ZnS quantum dot bio-
conjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122,
12142–12150.doi:10.1021/ja002535y
Mayilo, S., Kloster, M. A., Wunderlich, M., Lutich, A., Klar, T. A., Nichtl, A.,
et al. (2009). Long-range fluorescence quenching by gold nanoparticles in a
sandwich immunoassay for cardiac troponin T.Nano.Lett. 9, 4558–4563. doi:
10.1021/nl903178n
Means,G.E.,andFeeney,R.E.(1990).Chemicalmodificationsofproteins:history
andapplications.Bioconjug.Chem.1,2–12.doi:10.1021/bc00001a001
Medarova, Z., Pham,W., Farrar, C., Petkova, V., andMoore, A. (2007). In vivo
imagingof siRNAdeliveryandsilencing intumors.Nat.Med.13,372–377.doi:
10.1038/nm1486
Medintz,I.L.,Mattoussi,H.,andClapp,A.R.(2008).Potentialclinicalapplications
ofquantumdots. Int. J.Nanomed.3,151–167.doi:10.1002/smll.201000279
Meldal,M., and Tornoe, C.W. (2008). Cu-catalyzed azide-alkyne cycloaddition.
Chem.Rev.108,2952–3015.doi:10.1021/cr0783479
Min, C., Shao, H., Liong, M., Yoon, T. J., Weissleder, R., and Lee, H. (2012).
Mechanismofmagnetic relaxationswitching sensing.ACSNano6,6821–6828.
doi:10.1021/nn301615b
Minelli, C., Lowe, S. B., and Stevens,M.M. (2010). Engineering nanocomposite
materials forcancer therapy.Small6,2336–2357.doi:10.1002/smll.201000523
Mirkin,C.A.,Letsinger,R.L.,Mucic,R.C.,andStorhoff, J. J. (1996).ADNA-based
method for rationally assembling nanoparticles into macroscopic materials.
Nature382,607–609.doi:10.1038/382607a0
Molday, R. S., Yen, S. P. S., and Renbaum, A. (1977). Application of magnetic
microspheres in labelling and separation of cells.Nature 268, 437–438. doi:
10.1038/268437a0
Montenegro, J. M., Grazu, V., Sukhanova, A., Agarwal, S., de la Fuente, J. M.,
Nabiev, I., et al. (2013). Controlled antibody/(bio-) conjugation of inorganic
nanoparticles for targeted delivery. Adv. Drug. Deliv. Rev. 65, 677–688. doi:
10.1016/j.addr.2012.12.003
Moros, M., Hernaez, B., Garet, E., Dias, J. T., Saez, B., Grazu, V., et al. (2012).
Monosaccharides versus PEG-functionalized NPs: influence in the cellular
uptake.ACSNano6,1565–1577.doi:10.1021/nn204543c
Moros,M., Pelaz, B., Lopez-Larrubia, P.,Garcia-Martin,M. L.,Grazu,V., andde
la Fuente, J.M. (2010). Engineering biofunctionalmagnetic nanoparticles for
biotechnologicalapplications.Nanoscale2,1746–1755.doi:10.1039/c0nr00104j
Murcia,M. J., andNaumann, C. A. (2005). “Biofunctionalization of fluorescent
nanoparticles,” inBiofunctionalization ofNanomaterials, edC. S. S. R. Kumar
(Weinheim:Wiley-VCH),1–40.
Murphy, C. J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M.,Goldsmith,
E. C., et al. (2008). Gold nanoparticles in biology: beyond toxicity to cellular
imaging.Acc.Chem.Res.41,1721–1730.doi:10.1021/ar800035u
Murray,C.B.,Norris,D.J.,andBawendi,M.G.(1993).Synthesisandcharacteriza-
tionofnearlymonodisperseCde(e=S,Se,Te)semiconductornanocrystallites.
J.Am.Chem.Soc.115,8706–8715.doi:10.1021/ja00072a025 Mykhaylyk, O., Antequera, Y. S., Vlaskou, D., and Plank, C. (2007). Generation
of magnetic nonviral gene transfer agents andmagnetofection in vitro.Nat.
Protocols2,2391–2411.doi:10.1038/nprot.2007.352
Nakajima,N., and Ikada, Y. (1995).Mechanismof amide formation by carbodi-
imide forbioconjugation inaqueousmedia.Bioconjug.Chem.6, 123–130.doi:
10.1021/bc00031a015
Nam, J. M., Stoeva, S. I., and Mirkin, C. A. (2004). Bio-bar-code-based DNA
detection with PCR-like sensitivity. J. Am. Chem. Soc. 126, 5932–5933. doi:
10.1021/ja049384+
Nam, J.M.,Thaxton,C. S., andMirkin,C.A. (2003).Nanoparticle-basedbio-bar
codes for the ultrasensitive detection of proteins. Science 301, 1884–1886. doi:
10.1126/science.1088755
Namiki,Y.,Namiki,T.,Yoshida,H., Ishii,Y.,Tsubota,A.,Koido,S., et al. (2009).A
novelmagneticcrystal-lipidnanostructure formagneticallyguided invivogene
delivery.Nat.Nanotech.4,598–606.doi:10.1038/nnano.2009.202
Nativo,P.,Prior,I.A.,andBrust,M.(2008).Uptakeandintracellularfateofsurface-
modifiedgoldnanoparticles.ACSNano2,1639–1644.doi:10.1021/nn800330a
Ni, J.,Lipert,R. J.,Dawson,G.B., andPorter,M.D.(1999). Immunoassayreadout
methodusingextrinsicRaman labels adsorbedon immunogoldcolloids.Anal.
Chem.71,4903–4908.doi:10.1021/ac990616a
Nobs, L., Buchegger, F.,Gurny,R., andAllémann,E. (2004).Currentmethods for
attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93,
1980–1992.doi:10.1002/jps.20098
Oh, E., Hong,M. Y., Lee, D., Nam, S. H., Yoon, H. C., and Kim, H. S. (2005).
Inhibitionassayofbiomoleculesbasedonfluorescenceresonanceenergy trans-
fer (FRET) between quantumdots and gold nanoparticles. J. Am. Chem. Soc.
127,3270–3271.doi:10.1021/ja0433323
Oh, E., Susumu, K., Blanco-Canosa, J. B., Medintz, I. L., Dawson, P. E., and
Mattoussi, H. (2010a). preparation of stable maleimide-functionalized au
nanoparticles and their use in counting surface ligands. Small 6, 1273–1278.
doi:10.1002/smll.201000279
Oh, E., Susumu, K., Goswami, R., andMattoussi, H. (2010b). One-phase syn-
thesis of water-soluble gold nanoparticles with control over size and surface
functionalities.Langmuir26,7604–7613.doi:10.1021/la904438s
Osaki,F.,Kanamori,T., Sando,S., Sera,T., andAoyama,Y. (2004).Aquantumdot
conjugatedsugarball anditscellularuptakeonthesizeeffectsofendocytosis in
thesubviral region. J.Am.Chem.Soc.126,6520–6521.doi:10.1021/ja048792a
Otsuka, H., Akiyama, Y., Nagasaki, Y., and Kataoka, K. (2001). Quantitative
and reversible lectin-induced association of gold nanoparticlesmodifiedwith
alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J. Am. Chem. Soc. 123,
8226–8230.doi:10.1021/ja010437m
Pandey, P., Singh, S. P., Arya, S. K., Gupta, V., Datta,M., Singh, S., et al. (2007).
Application of thiolated gold nanoparticles for the enhancement of glucose
oxidaseactivity.Langmuir23,3333–3337.doi:10.1021/la062901c
Pankhurst,Q.A.,Connolly, J., Jones, S.K., andDobson, J. (2003).Applicationsof
magnetic nanoparticles in biomedicine. J. Phys.DAppl. Phys. 36,R167–R181.
doi:10.1088/0022-3727/36/13/201
Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K., andDobson, J. (2009). Progress
inapplicationsofmagneticnanoparticles inbiomedicine. J. Phys.DAppl.Phys
42:224001.doi:10.1088/0022-3727/42/22/224001
Pellegrino,T.,Kudera,S.,Liedl,T.,Munoz,J.A.,Manna,L.,andParak,W.J.(2005).
On thedevelopment of colloidal nanoparticles towardsmultifunctional struc-
tures and their possible use for biological applications. Small 1, 48–63. doi:
10.1002/smll.200400071
Pellegrino, T., Sperling, R. A., Alivisatos, A. P., andParak,W. J. (2007). Gel elec-
trophoresis of gold-DNA nanoconjugates. J. Biomed. Biotechnol. 2007:26796.
doi:10.1155/2007/26796
Perez, J. M., Josephson, L., O’Loughlin, T., Hogemann, D., and Weissleder, R.
(2002).Magnetic relaxationswitchescapableof sensingmolecular interactions.
Nat.Biotechnol.20,816–820.doi:10.1038/nbt720
Petryayeva,E., andKrull,U. J. (2012).Quantumdotandgoldnanoparticle immo-
bilization for biosensing applications using multidentate imidazole surface
ligands.Langmuir28,13943–13951.doi:10.1021/la302985x
Plank,C.,Zelphati,O., andMykhaylyk,O. (2011).Magnetically enhancednucleic
acid delivery. Ten years ofmagnetofection–progress andprospects.Adv.Drug.
Deliv.Rev.63,1300–1331.doi:10.1016/j.addr.2011.08.002
Polo, E.,Del, P. P., Pelaz,B.,Grazu,V., andde laFuente, J.M. (2013). Plasmonic-
driven thermal sensing:ultralowdetectionof cancermarkers.Chem.Commun.
(Camb.)49,3676–3678.doi:10.1039/c3cc39112d
Frontiers inChemistry | ChemicalEngineering July2014 |Volume2 |Article48 | 31
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie