Seite - 32 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 32 -
Text der Seite - 32 -
Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles
Pons, T., Medintz, I. L., Sapsford, K. E., Higashiya, S., Grimes, A. F., English,
D. S., et al. (2007). On the quenching of semiconductor quantum dot
photoluminescence by proximal gold nanoparticles.Nano Lett. 7, 3157–3164.
doi:10.1021/nl071729+
Poulose,A.C.,Veeranarayanan, S.,Mohamed,M.S.,Raveendran, S.,Nagaoka,Y.,
Yoshida, Y., et al. (2012). PEGCoatedBiocompatibleCadmiumChalcogenide
QuantumDots forTargeted ImagingofCancerCells. J. Fluoresc. 22, 931–944.
doi:10.1007/s10895-011-1032-y
Prasuhn,D. E., Feltz, A., Blanco-Canosa, J. B., Susumu,K., Stewart,M.H.,Mei,
B. C., et al. (2010). Quantumdot peptide biosensors formonitoring caspase
3 proteolysis and calcium ions. ACS Nano 4, 5487–5497. doi: 10.1021/nn1
016132
Prijic,S., andSersa,G. (2011).Magneticnanoparticlesas targeteddeliverysystems
inoncology.Radiol.Oncol.45,1–16.doi:10.2478/v10019-011-0001-z
Prow,T.W.,Monteiro-Riviere,N.A., Inman,A.O.,Grice, J. E.,Chen,X. F., et al.
(2012). Quantum dot penetration into viable human skin.Nanotoxicology 6,
173–185.doi:10.3109/17435390.2011.569092
Puertas, S., Batalla, P., Moros, M., Polo, E., del Pino, P., Guisán, J. M., et al.
(2011). Taking advantage of unspecific interactions to produce highly active
magnetic nanoparticle-antibody conjugates. ACS Nano 5, 4521–4528. doi:
10.1021/nn200019s
Putman,C.A. J., deGrooth, B.G.,Hansma, P.K., vanHulst,N. F., andGreve, J.
(1993). Immunogold labels: cell-surfacemarkers in atomic forcemicroscopy.
Ultramicroscopy48,177–182.doi:10.1016/0304-3991(93)90180-6
Ravi,S.,Krishnamurthy,V.R.,Caves, J.M.,Haller,C.A.,andChaikof,E.L.(2012).
Maleimide-thiol coupling of a bioactive peptide to an elastin-like protein
polymer.ActaBiomaterialia8,627–635.doi:10.1016/j.actbio.2011.10.027
Ray, P.C., Fortner, A., andDarbha,G.K. (2006).Gold nanoparticle based FRET
assay for the detection ofDNA cleavage. J. Phys. Chem. B 110, 20745–20748.
doi:10.1021/jp065121l
Reed, A. M., and Metallo, S. J. (2010). Oriented protein adsorption to gold
nanoparticles through a genetically encodable binding motif. Langmuir 26,
18945–18950.doi:10.1021/la1035135
Reynolds,A.J.,Haines,A.H.,andRussell,D.A.(2006).Goldglyconanoparticlesfor
mimics andmeasurement of metal ion-mediated carbohydrate-carbohydrate
interactions.Langmuir22,1156–1163.doi:10.1021/la052261y
Reynolds, M., Marradi, M., Imberty, A., Penades, S., and Perez, S. (2012).
Multivalent gold glycoclusters: high affinitymolecular recognitionbybacterial
lectinPA-IL.Chem.AEur. J.18,4264–4273.doi:10.1002/chem.201102034
Rojo, J., Diaz, V., de la Fuente, J.M., Segura, I., Barrientos, A. G., Riese, H.H.,
et al. (2004). Gold glyconanoparticles as new tools in antiadhesive therapy.
Chembiochem5,291–297.doi:10.1002/cbic.200300726
Rosa, J.,Conde, J., de laFuente, J.M.,Lima, J.C., andBaptista,P.V. (2012).Gold-
nanobeacons for real-timemonitoring of RNA synthesis.Biosens. Bioelectron.
36,161–167.doi:10.1016/j.bios.2012.04.006
Rosa, J. P., Lima, J. C., and Baptista, P. V. (2011). Experimental photophys-
ical characterization of fluorophores in the vicinity of gold nanoparticles.
Nanotechnology22:415202.doi:10.1088/0957-4484/22/41/415202
Rosensweig, R. E. (2002).Heatingmagnetic fluidwith alternatingmagnetic field.
J.Magn.Magn.Mater.252,370–374.doi:10.1016/S0304-8853(02)00706-0
Rostro-Kohanloo, B. C., Bickford, L. R., Payne, C.M., Day, E. S., Anderson, L.
J. E., Zhong,M., et al. (2009). The stabilization and targeting of surfactant-
synthesized gold nanorods. Nanotechnology 20:434005. doi: 10.1088/0957-
4484/20/43/434005
Roullier, V., Clarke, S., You,C., Pinaud, F.,Gouzer,G., Schaible,D., et al. (2009).
High-affinity labeling and tracking of individual histidine-tagged proteins in
live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates.Nano
Lett.9,1228–1234.doi:10.1021/nl9001298
Ruan, J., Song,H.,Qian,Q. R., Li, C.,Wang, K., Bao, C. C., et al. (2012).HER2
monoclonal antibody conjugatedRNase-A-associatedCdTe quantumdots for
targetedimagingandtherapyofgastriccancer.Biomaterials33,7093–7102.doi:
10.1016/j.biomaterials.2012.06.053
Ruoslahti, E., Bhatia, S. N., and Sailor, M. J. (2010). Targeting of drugs and
nanoparticles to tumors. J.CellBiol.188,759–768.doi:10.1083/jcb.200910104
Sahoo,B., Sahu, S.K., andPramanik, P. (2011).Anovelmethod for the immobi-
lizationofureaseonphosphonategraftedironoxidenanoparticle. J.Mol.Catal.
BEnzym.69,95–102.doi:10.1016/j.molcatb.2011.01.001
Sam, S., Touahir, L., SalvadorAndresa, J., Allongue, P., Chazalviel, J. N., Gouget-
Laemmel, A. C., et al. (2009). Semiquantitative study of the EDC/NHS activationofacidterminalgroupsatmodifiedporoussiliconsurfaces.Langmuir
26,809–814.doi:10.1021/la902220a
Santra,S.,Kaittanis,C.,andPerez,J.M.(2009).Aliphatichyperbranchedpolyester:
anewbuildingblock in the constructionofmultifunctional nanoparticles and
nanocomposites.Langmuir26,5364–5373.doi:10.1021/la9037843
Sanz,V.,Conde, J.,Hernandez, Y., Baptista, P.V., Ibarra,M.R., andde la Fuente,
J.M. (2012). Effect of PEGbiofunctional spacers andTATpeptide ondsRNA
loading on goldnanoparticles. J.Nanopart. Res. 14, 1–9. doi: 10.1007/s11051-
012-0917-2
Sato,K.,Hosokawa,K.,andMaeda,M.(2003).Rapidaggregationofgoldnanopar-
ticles inducedbynon-cross-linkingDNAhybridization. J.Am.Chem.Soc.125,
8102–8103.doi:10.1021/ja034876s
Sawant,R.R., andTorchilin,V.P. (2012).Multifunctionalnanocarriers and intra-
cellular drug delivery. Curr. Opin. Solid State Mater. Sci. 16, 269–275. doi:
10.1016/j.cossms.2012.09.001
Scherer, F., Anton, M., Schillinger, U., Henke, J., Bergemann, C., Kruger, A.,
et al. (2002).Magnetofection: enhancing and targeting gene delivery bymag-
netic force in vitro and in vivo.Gene Ther. 9, 102–109. doi: 10.1038/sj.gt.33
01624
Schofield, C. L., Field, R. A., and Russell, D. A. (2007). Glyconanoparticles for
the colorimetric detection of cholera toxin. Anal.Chem. 79, 1356–1361. doi:
10.1021/ac061462j
Schofield, C. L.,Haines, A.H., Field, R. A., andRussell, D. A. (2006). Silver and
gold glyconanoparticles for colorimetric bioassays. Langmuir 22, 6707–6711.
doi:10.1021/la060288r
Schultz, S., Smith, D. R., Mock, J. J., and Schultz, D. A. (2000). Single-target
molecule detectionwithnonbleachingmulticolor optical immunolabels.Proc.
Natl.Acad.Sci.U.S.A.97,996–1001.doi:10.1073/pnas.97.3.996
Sheehan, J. C., Preston, J., and Cruickshank, P. A. (1965). A rapid synthesis of
oligopeptide derivatives without isolation of intermediates. J. Am. Chem. Soc.
87,2492–2493.doi:10.1021/ja01089a034
Shemetov, A. A., Nabiev, I., and Sukhanova, A. (2012). Molecular interaction
of proteins and peptides with nanoparticles. ACS Nano 6, 4585–4602. doi:
10.1021/nn300415x
Shen,H., Jawaid,A.M.,andSnee,P.T. (2009).Poly(ethyleneglycol)Carbodiimide
coupling reagents for the biological and chemical functionalization of water-
solublenanoparticles.ACSNano3,915–923.doi:10.1021/nn800870r
Shinchi, H., Wakao, M., Nakagawa, S., Mochizuki, E., Kuwabata, S., and Suda,
Y. (2012). Stable sugar-chain-immobilized fluorescent nanoparticles for prob-
ing lectin and cells. Chem. Asian J. 7, 2678–2682. doi: 10.1002/asia.2012
00362
Shvedova, A. A., Kagan, V. E., and Fadeel, B. (2010). Close encounters of the
small kind: adverse effects ofman-madematerials interfacingwith the nano-
cosmos of biological systems.Annu. Rev. Pharmacol. Toxicol. 50, 63–88. doi:
10.1146/annurev.pharmtox.010909.105819
Simpson, C. A., Agrawal, A. C., Balinski, A., Harkness, K. M., and Cliffel,
D. E. (2011). Short-chain PEG mixed monolayer protected gold clusters
increase clearance and red blood cell counts. ACS Nano 5, 3577–3584. doi:
10.1021/nn103148x
Singh, B. R., Singh, B. N., Khan, W., Singh, H. B., and Naqvi, A. H. (2012).
ROS-mediated apoptotic cell death inprostate cancer LNCaPcells inducedby
biosurfactant stabilized CdS quantum dots. Biomaterials 33, 5753–5767. doi:
10.1016/j.biomaterials.2012.04.045
Singh,M.P., and Strouse,G. F. (2010). Involvement of the LSPR spectral overlap
for energy transfer between adye and aunanoparticle. J. Am.Chem. Soc. 132,
9383–9391.doi:10.1021/ja1022128
Skaff, H., and Emrick, T. (2003). The use of 4-substituted pyridines to afford
amphiphilic, pegylated cadmiumselenidenanoparticles.Chem.Commun. 52–
53.doi:10.1039/b208718a
Smith, A.M., Dave, S., Nie, S. M., True, L., and Gao, X. H. (2006). Multicolor
quantumdots formolecular diagnostics of cancer. Expert Rev.Mol. Diagn. 6,
231–244.doi:10.1586/14737159.6.2.231
Smith, A. M., and Nie, S. (2012). Compact quantum dots for single-molecule
imaging. J.Vis.Exp.68:4236.doi:10.3791/4236
Smith,A.M.,Wen,M.M.,andNie,S.(2010).Imagingdynamiccellulareventswith
quantumdotsThebright future.Biochem.(Lond.)32:12.
So, M. K., Loening, A. M., Gambhir, S. S., and Rao, J. H. (2006a). Creating
self-illuminating quantum dot conjugates. Nat. Protoc. 1, 1160–1164. doi:
10.1038/nprot.2006.162
www.frontiersin.org July2014 |Volume2 |Article48 | 32
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie