Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Seite - 43 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 43 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Bild der Seite - 43 -

Bild der Seite - 43 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text der Seite - 43 -

Dawidczyket al. Nanomedicines for cancer therapy SUMMARY Nanoparticle-based delivery systems provide new opportunities toovercomethe limitationsassociatedwithtraditionaldrugther- apy and to achieve both therapeutic anddiagnostic functions in the same platform. The efficiency of drug or gene delivery to a tumorsite isdependentonthephysico-chemicalpropertiesofthe delivery platformand a range of physiologically imposeddesign constraints including clearance by the mononuclear phagocyte system and extravasation from circulation at the tumor site by theenhancedpermeabilityandretentioneffect. The lack of uniformity in pre-clinical trials of nanoparticle- based delivery systems has prevented systematic comparison of these studies andhas been an impediment to developing design rules fornewsystemsor specific applications.Of the largenum- berofpre-clinical trials, surprisingly fewreportquantitativedata on parameters that would be useful in developing design rules fornanomedicines.Thepoorexperimentaldesignandvariability of experimental conditions also contribute to slowdevelopment of the field and the lack of clinical impact.We highlight some of theproblemswithpre-clinical trials nanoparticle-baseddeliv- ery systemsandsuggest somesolutions to increase the impactof individual studies. SUPPLEMENTARYMATERIAL The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fchem. 2014.00069/abstract REFERENCES Adamis, A. P., Altaweel, M., Bressler, N. M., Cunningham, E. T., Davis, M. D., Goldbaum,M.,etal. (2006).Changes inretinalneovascularizationafterpegap- tanib (Macugen) therapy in diabetic individuals.Ophthalmology 113, 23–28. doi:10.1016/j.ophtha.2005.10.012 Allen, T.M. (2002). Ligand-targeted therapeutics in anticancer therapy.Nat. Rev. Cancer2,750–763.doi:10.1038/nrc903 Ando,M., Yonemori, K., Katsumata, N., Shimizu, C., Hirata, T., Yamamoto,H., et al. (2012). Phase I and pharmacokinetic study of nab-paclitaxel, nanopar- ticle albumin-boundpaclitaxel, administeredweekly to Japanese patientswith solid tumors andmetastatic breast cancer.Cancer Chemother. Pharmacol. 69, 457–465.doi:10.1007/s00280-011-1726-5 Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., and Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32. doi: 10.1016/S1748-0132(07)70084-1 Arruebo, M., Valladares, M., and Gonzalez-Fernandez, A. (2009). Antibody- conjugatednanoparticlesforbiomedicalapplications.J.Nanomat.2009:439389. doi:10.1155/2009/439389 Arvizo,R.,Bhattacharya,R., andMukherjee,P. (2010).Goldnanoparticles:oppor- tunities and challenges innanomedicine.ExpertOpin.DrugDeliv.7, 753–763. doi:10.1517/17425241003777010 Balogh, L.,Nigavekar, S. S.,Nair, B.M., Lesniak,W., Zhang,C., Sung, L. Y., et al. (2007). Significant effectof sizeon the in vivobiodistributionof goldcompos- ite nanodevices inmouse tumormodels.Nanomed.Nanotechnol. Biol.Med.3, 281–296.doi:10.1016/j.nano.2007.09.001 Banerjee, R., Katsenovich, Y., Lagos, L.,McIintosh,M., Zhang, X., and Li, C. Z. (2010). Nanomedicine:magnetic nanoparticles and their biomedical applica- tions.Curr.Med.Chem.17,3120–3141.doi:10.2174/092986710791959765 Banerjee, S. R., Foss, C. A., Castanares, M., Mease, R. C., Byun, Y., Fox, J. J., etal.(2008).Synthesisandevaluationoftechnetium-99m-andrhenium-labeled inhibitorsoftheprostate-specificmembraneantigen(PSMA). J.Med.Chem.51, 4504–4517.doi:10.1021/jm800111u Barenholz,Y.(2012).Doxil(R)–thefirstFDA-approvednano-drug: lessonslearned. J.Control.Release160,117–134.doi:10.1016/j.jconrel.2012.03.020 Bedikian, A. Y., Silverman, J. A., Papadopoulos, N. E., Kim, K. B., Hagey, A. E., Vardeleon,A.,etal.(2011).Pharmacokineticsandsafetyofmarqibo(vincristine sulfate liposomes injection) in cancer patients with impaired liver function. J.Clin.Pharmacol.51,1205–1212.doi:10.1177/0091270010381499 Bellott, R., Auvrignon,A., Leblanc, T., Perel, Y.,Gandemer,V., Bertrand, Y., et al. (2001). Pharmacokinetics of liposomal daunorubicin [DaunoXome] during a phase I-II study in children with relapsed acute lymphoblastic leukaemia. CancerChemother.Pharmacol.47,15–21.doi:10.1007/s002800000206 Benezra, M., Penate-Medina, O., Zanzonico, P. B., Schaer, D., Ow, H., Burns, A., et al. (2011).Multimodal silica nanoparticles are effective cancer-targeted probes in amodel of humanmelanoma. J. Clin. Invest. 121, 2768–2780. doi: 10.1172/JCI45600 Blanco,E.,Bey,E.A.,Khemtong,C.,Yang, S.G., Setti-Guthi, J.,Chen,H.B., et al. (2010).Beta-lapachonemicellarnanotherapeutics fornon-small cell lungcan- cer therapy.CancerRes.70,3896–3904.doi:10.1158/0008-5472.CAN-09-3995 Boisselier, E., andAstruc,D. (2009).Goldnanoparticles innanomedicine: prepa- rations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782.doi:10.1039/b806051g Bradley,A.M.,Devine,M.,andDeremer,D.(2013).Brentuximabvedotin:ananti- CD30 antibody-drug conjugate.Am. J. Health Syst. Pharm. 70, 589–597. doi: 10.2146/ajhp110608 Bunka,D.H.J.,andStockley,P.G.(2006).Aptamerscomeofage—atlast.Nat.Rev. Microbiol.4,588–596.doi:10.1038/nrmicro1458 Burns, A.,Ow,H., andWiesner,U. (2006). Fluorescent core-shell silica nanopar- ticles: towards “LabonaParticle” architectures fornanobiotechnology.Chem. Soc.Rev.35,1028–1042.doi:10.1039/b600562b Chames,P.,VanRegenmortel,M.,Weiss,E., andBaty,D.(2009).Therapeuticanti- bodies: successes, limitations and hopes for the future.Br. J. Pharmacol. 157, 220–233.doi:10.1111/j.1476-5381.2009.00190.x Chanda,N.,Kattumuri, V., Shukla, R., Zambre,A., Katti, K.,Upendran,A., et al. (2010). Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl. Acad. Sci. U.S.A. 107, 8760–8765. doi: 10.1073/pnas.1002143107 Chattopadhyay,N.,Fonge,H.,Cai,Z., Scollard,D.,Lechtman,E.,Done,S. J., et al. (2012).Roleofantibody-mediatedtumortargetingandrouteofadministration in nanoparticle tumor accumulation in vivo.Mol. Pharm. 9, 2168–2179. doi: 10.1021/mp300016p Chen, F., Hong, H., Zhang, Y., Valdovinos, H. F., Shi, S. X., Kwon, G. S., et al. (2013). In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radio labeledmesoporoussilicananoparticles.ACSNano 7,9027–9039.doi:10.1021/nn403617j Chen,L.C.,Wu,Y.H.,Liu, I.H.,Ho,C.L.,Lee,W.C.,Chang,C.H.,etal. (2012a). Pharmacokinetics,dosimetryandcomparativeefficacyofRe-188-liposomeand 5-FUinaCT26-luclung-metastaticmicemodel.Nucl.Med.Biol.39,35–43.doi: 10.1016/j.nucmedbio.2011.06.010 Chen,M.,Fang,X.L.,Tang,S.H.,andZheng,N.F. (2012b).Polypyrrolenanopar- ticles forhigh-performance invivonear-infraredphotothermal cancer therapy. Chem.Commun.48,8934–8936.doi:10.1039/c2cc34463g Cheng, K., Kothapalli, S. R., Liu,H.G., Koh, A. L., Jokerst, J. V., Jiang,H., et al. (2014).Construction andvalidationofnanogold tripods formolecular imag- ing of living subjects. J. Am. Chem. Soc. 136, 3560–3571. doi: 10.1021/ja41 2001e Cho, K., Wang, X., Nie, S., Chen, Z. G., and Shin, D. M. (2008). Therapeutic nanoparticles fordrugdelivery incancer.Clin.CancerRes.14, 1310–1316.doi: 10.1158/1078-0432.CCR-07-1441 Choi, C. H. J., Alabi, C. A., Webster, P., and Davis, M. E. (2010). Mechanism of active targeting in solid tumors with transferrin-containing gold nanopar- ticles. Proc. Natl. Acad. Sci. U.S.A. 107, 1235–1240. doi: 10.1073/pnas.09141 40107 Coimbra, M., Rijcken, C. J. F., Stigter, M., Hennink, W. E., Storm, G., and Schiffelers, R. M. (2012). Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. J. Control. Release 163, 361–367. doi: 10.1016/j.jconrel.2012.09.014 Cornelissen, B., Able, S., Kersemans, V.,Waghorn, P. A.,Myhra, S., Jurkshat, K., et al. (2013). Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials 34, 1146–1154.doi:10.1016/j.biomaterials.2012.10.054 Daniels, T. R., Bernabeu, E., Rodriguez, J. A., Patel, S., Kozman,M., Chiappetta, D. A., et al. (2012). The transferrin receptor and the targeted delivery of www.frontiersin.org August2014 |Volume2 |Article69 | 43
zurĂĽck zum  Buch Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Titel
Cancer Nanotheranostics
Untertitel
What Have We Learnd So Far?
Autoren
JoĂŁo Conde
Pedro Viana Baptista
JesĂşs M. De La Fuente
Furong Tian
Herausgeber
Frontiers in Chemistry
Datum
2016
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-2-88919-776-7
Abmessungen
21.0 x 27.7 cm
Seiten
132
Schlagwörter
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics