Seite - 66 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 66 -
Text der Seite - 66 -
MorenoandPêgo AONcancer therapeutics
Alkilany, A. M., andMurphy, C. J. (2010). Toxicity and cellular uptake of gold
nanoparticles: what we have learned so far? J. Nanopart. Res. 12, 2313–2333.
doi:10.1007/s11051-010-9911-8
Badros,A.Z.,Goloubeva,O.,Rapoport,A.P.,Ratterree,B.,Gahres,N.,Meisenberg,
B., et al. (2005). Phase II study of G3139, a Bcl-2 antisense oligonucleotide,
in combination with dexamethasone and thalidomide in relapsed multiple
myelomapatients. J.Clin.Oncol.23,4089–4099.doi:10.1200/JCO.2005.14.381
Barchet,W.,Wimmenauer, V., Schlee, M., andHartmann, G. (2008). Accessing
the therapeutic potential of immunostimulatory nucleic acids. Curr. Opin.
Immunol.20,389–395.doi:10.1016/j.coi.2008.07.007
Bennett, C. F., and Swayze, E. E. (2010). RNA targeting therapeutics: molec-
ular mechanisms of antisense oligonucleotides as a therapeutic platform.
Annu. Rev. Pharmacol. Toxicol. 50, 259–293. doi: 10.1146/annurev.pharmtox.
010909.105654
Berger, I., Tereshko, V., Ikeda, H., Marquez, V. E., and Egli, M. (1998). Crystal
structures of B-DNAwith incorporated 2′-deoxy-2′-fluoro-arabino-furanosyl
thymines: implications of conformational preorganization for duplex stability.
NucleicAcidsRes.26,2473–2480.doi:10.1093/nar/26.10.2473
Bestas, B., Moreno, P. M., Blomberg, K. E., Mohammad, D. K., Saleh, A. F.,
Sutlu,T., et al. (2014). Splice-correctingoligonucleotides restoreBTKfunction
inX-linked agammaglobulinemiamodel. J. Clin. Invest. 124, 4067–4081. doi:
10.1172/JCI76175
Brown, D. A., Kang, S. H., Gryaznov, S. M., Dedionisio, L., Heidenreich,
O., Sullivan, S., et al. (1994). Effect of phosphorothioate modification
of oligodeoxynucleotides on specific protein binding. J. Biol. Chem. 269,
26801–26805.
Chauhan,V.P., Stylianopoulos,T.,Boucher,Y., and Jain,R.K. (2011).Deliveryof
molecularandnanoscalemedicine to tumors: transportbarriersandstrategies.
Annu.Rev.Chem.Biomol.Eng.2,281–298.doi: 10.1146/annurev-chembioeng-
061010-114300
Chauhan,V.P.,Stylianopoulos,T.,Martin,J.D.,Popovic,Z.,Chen,O.,Kamoun,W.
S.,etal. (2012).Normalizationoftumourbloodvessels improvesthedeliveryof
nanomedicines inasize-dependentmanner.Nat.Nanotechnol.7,383–388.doi:
10.1038/nnano.2012.45
Crooke, S. T., Graham, M. J., Zuckerman, J. E., Brooks, D., Conklin, B. S.,
Cummins, L. L., et al. (1996). Pharmacokinetic properties of several novel
oligonucleotideanalogs inmice. J.Pharmacol.Exp.Ther.277,923–937.
Delong, R. K., Nolting, A., Fisher,M., Chen, Q.,Wickstrom, E., Kligshteyn,M.,
et al. (1997). Comparative pharmacokinetics, tissue distribution, and tumor
accumulation of phosphorothioate, phosphorodithioate, andmethylphospho-
nateoligonucleotides innudemice.AntisenseNucleicAcidDrugDev.7, 71–77.
doi:10.1089/oli.1.1997.7.71
Devi, G. R., Beer, T.M., Corless, C. L., Arora, V.,Weller,D. L., and Iversen, P. L.
(2005).Invivobioavailabilityandpharmacokineticsofac-MYCantisensephos-
phorodiamidatemorpholinooligomer,AVI-4126, insolid tumors.Clin.Cancer
Res.11,3930–3938.doi:10.1158/1078-0432.CCR-04-2091
Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., et al. (2014).
Gold nanoparticles for nucleic acid delivery.Mol. Ther. 22, 1075–1083. doi:
10.1038/mt.2014.30
Dirin,M., andWinkler, J. (2013). Influence of diverse chemicalmodifications on
theADMEcharacteristics and toxicology of antisense oligonucleotides.Expert
Opin.Biol.Ther.13,875–888.doi:10.1517/14712598.2013.774366
Disterer, P., Kryczka, A., Liu, Y., Badi, Y. E.,Wong, J. J.,Owen, J. S., et al. (2014).
Developmentoftherapeuticsplice-switchingoligonucleotides.Hum.GeneTher.
25,587–598.doi:10.1089/hum.2013.234
Eckstein, F. (1967). A dinucleoside phosphorothioate. Tetrahedron Lett. 8,
1157–1160.doi:10.1016/S0040-4039(00)90656-7
Fang, J., Nakamura, H., and Maeda, H. (2011). The EPR effect: unique fea-
tures of tumor blood vessels for drug delivery, factors involved, and limita-
tions and augmentation of the effect.Adv. DrugDeliv. Rev. 63, 136–151. doi:
10.1016/j.addr.2010.04.009
Geary,R. S. (2009).Antisenseoligonucleotidepharmacokinetics andmetabolism.
ExpertOpin.DrugMetab.Toxicol.5,381–391.doi:10.1517/17425250902877680
Gekeler, V., Gimmnich, P., Hofmann, H. P., Grebe, C., Rommele, M., Leja, A.,
et al. (2006). G3139 and other CpG-containing immunostimulatory phos-
phorothioate oligodeoxynucleotides are potent suppressors of the growth
of human tumor xenografts in nude mice. Oligonucleotides 16, 83–93. doi:
10.1089/oli.2006.16.83 Gokhale, P. C., Zhang, C., Newsome, J. T., Pei, J., Ahmad, I., Rahman, A., et al.
(2002). Pharmacokinetics, toxicity, and efficacy of ends-modified raf anti-
senseoligodeoxyribonucleotideencapsulatedinanovelcationic liposome.Clin.
CancerRes.8,3611–3621.
Gomes, C. P., Ferreira Lopes, C. D., DuarteMoreno, P. M., Varela-Moreira, A.,
Alonso,M. J., and Pêgo, A. P. (2014). Translating chitosan to clinical delivery
ofnucleicacid-baseddrugs.MRSBull.39,60–70.doi:10.1557/mrs.2013.314
Graham,M. J., Crooke, S. T.,Monteith, D. K., Cooper, S. R., Lemonidis, K.M.,
Stecker, K. K., et al. (1998). In vivo distribution andmetabolism of a phos-
phorothioateoligonucleotidewithin rat liver after intravenous administration.
J.Pharmacol.Exp.Ther.286,447–458.
Hammond,S.M.,andWood,M.J. (2011).Genetic therapies forRNAmis-splicing
diseases.TrendsGenet.27,196–205.doi:10.1016/j.tig.2011.02.004
Henry, S. P., Templin, M. V., Gillett, N., Rojko, J., and Levin, A. A. (1999).
Correlationof toxicity andpharmacokinetic properties of a phosphorothioate
oligonucleotide designed to inhibit ICAM-1.Toxicol. Pathol. 27, 95–100. doi:
10.1177/019262339902700117
Henry, S., Stecker, K., Brooks, D., Monteith, D., Conklin, B., and Bennett, C.
F. (2000). Chemically modified oligonucleotides exhibit decreased immune
stimulation inmice. J.Pharmacol.Exp.Ther.292,468–479.
Hong,D. S., Kurzrock, R.,Oh, Y.,Wheler, J., Naing, A., Brail, L., et al. (2011). A
phase1doseescalation,pharmacokinetic, andpharmacodynamicevaluationof
eIF-4E antisense oligonucleotide LY2275796 inpatientswith advanced cancer.
Clin.CancerRes.17,6582–6591.doi:10.1158/1078-0432.CCR-11-0430
Hovingh, K., Besseling, J., and Kastelein, J. (2013). Efficacy and safety of
mipomersen sodium (Kynamro). Expert Opin. Drug Saf. 12, 569–579. doi:
10.1517/14740338.2013.793670
Iversen,P. L.,Copple,B. L., andTewary,H.K. (1995). Pharmacology and toxicol-
ogyofphosphorothioateoligonucleotides in themouse, rat,monkeyandman.
Toxicol.Lett.82–83,425–430.doi:10.1016/0378-4274(95)03572-9
Jaaskelainen, I., Peltola, S.,Honkakoski,P.,Monkkonen, J., andUrtti,A. (2000).A
lipid carrierwith amembrane active component and a small complex size are
required for efficient cellular delivery of anti-sense phosphorothioate oligonu-
cleotides.Eur. J.Pharm.Sci.10,187–193.doi:10.1016/S0928-0987(00)00068-3
Jain,R.K.(2012).Deliveryofmolecularandcellularmedicinetosolidtumors.Adv.
DrugDeliv.Rev.64,353–365.doi:10.1016/j.addr.2012.09.011
Jang,S.H.,Wientjes,M.G.,Lu,D.,andAu,J.L.(2003).Drugdeliveryandtransport
tosolid tumors.Pharm.Res.20,1337–1350.doi:10.1023/A:1025785505977
Juliano,R.,Bauman, J.,Kang,H., andMing,X. (2009).Biologicalbarriers to ther-
apywith antisense and siRNAoligonucleotides.Mol. Pharm. 6, 686–695. doi:
10.1021/mp900093r
Juliano, R. L., Ming, X., and Nakagawa, O. (2012). The chemistry and biol-
ogy of oligonucleotide conjugates. Acc. Chem. Res. 45, 1067–1076. doi:
10.1021/ar2002123
Kawai, G., Yamamoto, Y., Kamimura, T., Masegi, T., Sekine, M., Hata, T., et al.
(1992). Conformational rigidity of specific pyrimidine residues in tRNA
arises from posttranscriptional modifications that enhance steric interaction
between the base and the 2′-hydroxyl group.Biochemistry 31, 1040–1046. doi:
10.1021/bi00119a012
Kibler-Herzog, L., Zon, G., Uznanski, B., Whittier, G., and Wilson, W. D.
(1991). Duplex stabilities of phosphorothioate, methylphosphonate, and
RNA analogs of two DNA 14-mers. Nucleic Acids Res. 19, 2979–2986. doi:
10.1093/nar/19.11.2979
Koshkin,A.A.,Singh,S.K.,Nielsen,P.,Rajwanshi,V.K.,Kumar,R.,Meldgaard,M.,
et al. (1998). LNA (LockedNucleic Acids): synthesis of the adenine, cytosine,
guanine, 5-methylcytosine, thymine and uracil bicyclonucleosidemonomers,
oligomerisation, and unprecedented nucleic acid recognition.Tetrahedron 54,
3607–3630.doi:10.1016/S0040-4020(98)00094-5
Krieg, A.M., Guga, P., and Stec,W. (2003). P-chirality-dependent immune acti-
vation by phosphorothioate CpG oligodeoxynucleotides.Oligonucleotides 13,
491–499.doi:10.1089/154545703322860807
Krieg, A. M., and Stein, C. A. (1995). Phosphorothioate oligodeoxynucleotides:
antisenseoranti-protein?AntisenseRes.Dev.5,241.
Manoharan,M.(1999).2′-carbohydratemodificationsinantisenseoligonucleotide
therapy: importanceofconformation,configurationandconjugation.Biochim.
Biophys.Acta1489,117–130.doi:10.1016/S0167-4781(99)00138-4
Meidan, V.M., Glezer, J., Amariglio, N., Cohen, J. S., and Barenholz, Y. (2001).
Oligonucleotide lipoplexes: the influence of oligonucleotide composition on
Frontiers inChemistry | ChemicalEngineering October2014 |Volume2 |Article87 | 66
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie