Seite - 87 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 87 -
Text der Seite - 87 -
Conniotet al. Nanocarriers for immunecell targetingand tracking
Carrillo-Conde, B., Song, E.H.,Chavez-Santoscoy,A., Phanse, Y., Ramer-Tait, A.
E., Pohl,N. L., et al. (2011).Mannose-functionalized “pathogen-like” polyan-
hydride nanoparticles target C-type lectin receptors on dendritic cells.Mol.
Pharm.8,1877–1886.doi:10.1021/mp200213r
Carpenito,C.,Milone,M.C.,Hassan,R., Simonet, J. C., Lakhal,M., Suhoski,M.
M., et al. (2009). Control of large, established tumor xenografts with geneti-
callyretargetedhumanTcellscontainingCD28andCD137domains.Proc.Natl.
Acad.Sci.U.S.A.106,3360–3365.doi:10.1073/pnas.0813101106
Chan, K.W., Bulte, J. W., andMcMahon, M. T. (2014). Diamagnetic chemical
exchange saturation transfer (diaCEST) liposomes:physicochemicalproperties
and imaging applications.Wiley Interdiscip. Rev.Nanomed.Nanobiotechnol. 6,
111–124.doi:10.1002/wnan.1246
Chapuis,F.,Rosenzwajg,M.,Yagello,M.,Ekman,M.,Biberfeld,P., andGluckman,
J.C. (1997).Differentiationofhumandendritic cells frommonocytes in vitro.
Eur. J. Immunol.27,431–441.doi:10.1002/eji.1830270213
Chen,M.,Ouyang,H.,Zhou,S.,Li,J.,andYe,Y.(2014a).PLGA-nanoparticlemedi-
ateddeliveryofanti-OX40monoclonalantibodyenhancesanti-tumorcytotoxic
Tcell responses.Cell. Immunol.287,91–99.doi:10.1016/j.cellimm.2014.01.003
Chen, Y., Gu,H., Zhang,D. S., Li, F., Liu, T., andXia,W. (2014b).Highly effec-
tive inhibition of lung cancer growth andmetastasis by systemic delivery of
siRNA viamultimodalmesoporous silica-based nanocarrier. Biomaterials 35,
10058–10069.doi:10.1016/j.biomaterials.2014.09.003
Cheng, J., Teply, B. A., Sherifi, I., Sung, J., Luther, G., Gu, F. X., et al. (2007).
Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted
drugdelivery.Biomaterials28,869–876.doi:10.1016/j.biomaterials.2006.09.047
Cheong, C., Matos, I., Choi, J. H., Dandamudi, D. B., Shrestha, E., Longhi, M.
P., et al. (2010).Microbial stimulation fully differentiates monocytes to DC-
SIGN/CD209(+)dendriticcells forimmuneTcellareas.Cell143,416–429.doi:
10.1016/j.cell.2010.09.039
Chipman, S. D., Oldham, F. B., Pezzoni, G., and Singer, J.W. (2006). Biological
andclinicalcharacterizationofpaclitaxelpoliglumex(PPX,CT-2103),amacro-
molecularpolymer-drugconjugate. Int. J.Nanomedicine1,375–383.
Cho,N.H.,Cheong,T.C.,Min, J.H.,Wu, J.H., Lee, S. J., Kim,D., et al. (2011).
A multifunctional core-shell nanoparticle for dendritic cell-based cancer
immunotherapy.Nat.Nanotechnol.6,675–682.doi:10.1038/nnano.2011.149
Chow, E. K., and Ho, D. (2013). Cancer nanomedicine: from drug delivery to
imaging.Sci.Transl.Med.5,216rv214.doi:10.1126/scitranslmed.3005872
Christian,D.A.,Cai,S.,Bowen,D.M.,Kim,Y.,Pajerowski, J.D.,andDischer,D.E.
(2009).Polymersomecarriers: fromself-assembly to siRNAandprotein thera-
peutics.Eur. J.Pharm.Biopharm.71,463–474.doi:10.1016/j.ejpb.2008.09.025
Colvin,E.K. (2014).Tumor-associatedmacrophagescontribute to tumorprogres-
sion inovariancancer.Front.Oncol.4:137.doi:10.3389/fonc.2014.00137
Conde, J., Bao, C., Cui, D., Baptista, P. V., and Tian, F. (2014). Antibody-drug
gold nanoantennaswithRaman spectroscopic fingerprints for in vivo tumour
theranostics. J.Control.Release183,87–93.doi:10.1016/j.jconrel.2014.03.045
Condeelis, J., and Pollard, J. W. (2006). Macrophages: obligate partners for
tumor cell migration, invasion, and metastasis. Cell 124, 263–266. doi:
10.1016/j.cell.2006.01.007
Cornelissen, R., Lievense, L. A.,Maat, A. P.,Hendriks, R.W.,Hoogsteden,H.C.,
Bogers, A. J., et al. (2014). Ratio of intratumoralmacrophage phenotypes is a
prognostic factor in epithelioid malignant pleural mesothelioma. PLoS ONE
9:e106742.doi:10.1371/journal.pone.0106742
Cortez-Retamozo, V., Etzrodt, M., Newton, A., Rauch, P. J., Chudnovskiy, A.,
Berger, C., et al. (2012). Origins of tumor-associatedmacrophages and neu-
trophils.Proc.Natl. Acad. Sci.U.S.A.109, 2491–2496. doi: 10.1073/pnas.11137
44109
Couvreur, P., Stella, B., Reddy, L.H.,Hillaireau,H., Dubernet, C., Desmaele, D.,
et al. (2006).Squalenoylnanomedicinesaspotential therapeutics.NanoLett.6,
2544–2548.doi:10.1021/nl061942q
Cruz, L. J., Tacken, P. J., Bonetto, F., Buschow, S. I., Croes, H. J., Wijers, M.,
et al. (2011).Multimodal imaging of nanovaccine carriers targeted to human
dendriticcells.Mol.Pharm.8,520–531.doi:10.1021/mp100356k
Daldrup-Link,H.E.,Meier,R.,Rudelius,M.,Piontek,G.,Piert,M.,Metz, S., et al.
(2005).Invivotrackingofgeneticallyengineered,anti-HER2/neudirectednatu-
ralkillercells toHER2/neupositivemammarytumorswithmagneticresonance
imaging.Eur.Radiol.15,4–13.doi:10.1007/s00330-004-2526-7
Danhier,F.,Ansorena,E., Silva, J.M.,Coco,R.,LeBreton,A., andPreat,V. (2012).
PLGA-basednanoparticles: anoverviewof biomedical applications. J. Control.
Release161,505–522.doi:10.1016/j.jconrel.2012.01.043 Danhier, F., Feron,O., and Preat, V. (2010). To exploit the tumormicroenviron-
ment: passive and active tumor targeting of nanocarriers for anti-cancer drug
delivery. J.Control.Release148,135–146.doi:10.1016/j.jconrel.2010.08.027
Davidson,W. F., Giese, T., and Fredrickson, T.N. (1998). Spontaneous develop-
mentofplasmacytoidtumorsinmicewithdefectiveFas-Fasligandinteractions.
J.Exp.Med.187,1825–1838.
DeVries, I. J., Krooshoop,D. J., Scharenborg, N.M., Lesterhuis,W. J., Diepstra,
J. H., VanMuijen, G. N., et al. (2003). Effectivemigration of antigen-pulsed
dendritic cells to lymph nodes inmelanoma patients is determined by their
maturationstate.CancerRes.63,12–17.
De Vries, I. J., Lesterhuis, W. J., Barentsz, J. O., Verdijk, P., Van Krieken, J. H.,
Boerman, O. C., et al. (2005).Magnetic resonance tracking of dendritic cells
inmelanoma patients formonitoring of cellular therapy.Nat. Biotechnol. 23,
1407–1413.doi:10.1038/nbt1154
Denardo, S. J., Denardo, G. L., Natarajan, A., Miers, L. A., Foreman, A. R.,
Gruettner,C., et al. (2007).Thermaldosimetrypredictiveof efficacyof 111In-
ChL6 nanoparticle AMF–induced thermoablative therapy for human breast
cancer inmice. J.Nucl.Med.48,437–444.
Desmaele, D., Gref, R., andCouvreur, P. (2012). Squalenoylation: a generic plat-
form for nanoparticular drug delivery. J. Control. Release 161, 609–618. doi:
10.1016/j.jconrel.2011.07.038
Devaraj,N.K., Keliher, E. J., Thurber,G.M.,Nahrendorf,M., andWeissleder, R.
(2009).18Flabelednanoparticlesfor invivoPET-CTimaging.Bioconjug.Chem.
20,397–401.doi:10.1021/bc8004649
Dhodapkar,M.V., Dhodapkar, K.M., and Palucka, A. K. (2008). Interactions of
tumor cellswithdendritic cells: balancing immunity and tolerance.CellDeath
Differ.15,39–50.doi:10.1038/sj.cdd.4402247
Dilnawaz, F., Singh, A., Mohanty, C., and Sahoo, S. K. (2010). Dual drug
loadedsuperparamagnetic ironoxidenanoparticles for targetedcancer therapy.
Biomaterials31,3694–3706.doi:10.1016/j.biomaterials.2010.01.057
Diwan, M., Tafaghodi, M., and Samuel, J. (2002). Enhancement of immune
responses by co-delivery of aCpGoligodeoxynucleotide and tetanus toxoid in
biodegradablenanospheres.J.Control.Release85,247–262.doi:10.1016/S0168-
3659(02)00275-4
Dougan,M.,Li,D.,Neuberg,D.,Mihm,M.,Googe,P.,Wong,K.K., et al. (2011).
A dual role for the immune response in a mouse model of inflammation-
associated lungcancer. J.Clin. Invest.121,2436–2446.doi:10.1172/JCI44796
Dunn,G.P.,Bruce,A.T., Ikeda,H.,Old,L. J., andSchreiber,R.D. (2002).Cancer
immunoediting: from immunosurveillance to tumor escape.Nat. Immunol. 3,
991–998.doi:10.1038/ni1102-991
Dzhagalov, I.L.,Melichar,H. J.,Ross, J.O.,Herzmark,P., andRobey,E.A. (2012).
Two-photon imaging of the immune system.Curr. Protoc. Cytom.Chapter 12,
Unit1226.doi:10.1002/0471142956.cy1226s60
Eerola,A.K.,Soini,Y., andPaakko,P. (2000).Ahighnumberof tumor-infiltrating
lymphocytes are associated with a small tumor size, low tumor stage, and a
favorable prognosis inoperated small cell lung carcinoma.Clin.CancerRes.6,
1875–1881.
Ehmann, F., Sakai-Kato, K., Duncan, R., Hernan Perez De La Ossa, D., Pita,
R., Vidal, J. M., et al. (2013). Next-generation nanomedicines and nanosim-
ilars: EU regulators’ initiatives relating to the development and evaluation of
nanomedicines.Nanomedicine(Lond).8,849–856.doi:10.2217/nnm.13.68
Ehrlich, P. (1909). Beiträge zur Experimentellen Pathologie und Chemotherapie.
Leipzig:AkademischeVerlagsgesellschaft.
Engels, B., Engelhard, V. H., Sidney, J., Sette, A., Binder, D. C., Liu, R. B.,
et al. (2013). Relapse or eradication of cancer is predicted by peptide-
major histocompatibility complex affinity. Cancer Cell 23, 516–526. doi:
10.1016/j.ccr.2013.03.018
Ercolini,A.M.,Ladle,B.H.,Manning,E.A.,Pfannenstiel,L.W.,Armstrong,T.D.,
Machiels, J.P.,etal. (2005).Recruitmentof latentpoolsofhigh-avidityCD8(+)
T cells to the antitumor immune response. J. Exp.Med. 201, 1591–1602. doi:
10.1084/jem.20042167
Erdag, G., Schaefer, J. T., Smolkin,M. E., Deacon,D.H., Shea, S.M., Dengel, L.
T., et al. (2012). Immunotype and immunohistologic characteristics of tumor-
infiltrating immune cells are associated with clinical outcome in metastatic
melanoma. Cancer Res. 72, 1070–1080. doi: 10.1158/0008-5472.CAN-
11-3218
Escribese, M. M., Casas, M., and Corbi, A. L. (2012). Influence of low oxygen
tensions on macrophage polarization. Immunobiology 217, 1233–1240. doi:
10.1016/j.imbio.2012.07.002
Frontiers inChemistry | ChemicalEngineering November2014 |Volume2 |Article105 | 87
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie