Seite - 90 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 90 -
Text der Seite - 90 -
Conniotet al. Nanocarriers for immunecell targetingand tracking
Kumar, H., Kawai, T., and Akira, S. (2009). Pathogen recognition in the innate
immuneresponse.Biochem. J.420,1–16.doi:10.1042/BJ20090272
Labet, M., and Thielemans,W. (2009). Synthesis of polycaprolactone: a review.
Chem.Soc.Rev.38,3484–3504.doi:10.1039/b820162p
Lan, C., Huang, X., Lin, S., Huang, H., Cai, Q., Wan, T., et al. (2013).
ExpressionofM2-polarizedmacrophages is associatedwithpoorprognosis for
advancedepithelialovariancancer.Technol.CancerRes.Treat.12,259–267.doi:
10.7785/tcrt.2012.500312
Larson,D. R., Zipfel,W. R.,Williams, R.M., Clark, S.W., Bruchez,M. P.,Wise,
F.W., et al. (2003).Water-soluble quantumdots formultiphotonfluorescence
imaging invivo.Science300,1434–1436.doi:10.1126/science.1083780
Laskey,W.K., Feinendegen,L.E.,Neumann,R.D., andDilsizian,V. (2010). Low-
level ionizing radiation fromnoninvasive cardiac imaging: canwe extrapolate
estimatedrisksfromepidemiologicdatatotheclinicalsetting?JACCCardiovasc.
Imaging3,517–524.doi:10.1016/j.jcmg.2009.11.017
Lassalle, V., and Ferreira, M. L. (2007). PLA nano- andmicroparticles for drug
delivery: an overview of the methods of preparation. Macromol. Biosci. 7,
767–783.doi:10.1002/mabi.200700022
Lee, C. C., Mackay, J. A., Frechet, J. M., and Szoka, F. C. (2005). Designing
dendrimers for biological applications.Nat. Biotechnol. 23, 1517–1526. doi:
10.1038/nbt1171
Lee,C.S.,Cragg,M.,Glennie,M.,andJohnson,P. (2013).Novelantibodies target-
ing immune regulatory checkpoints for cancer therapy.Br. J. Clin. Pharmacol.
76,233–247.doi:10.1111/bcp.12164
Lee, H. J., Nguyen, Y. T., Muthiah, M., Vu-Quang, H., Namgung, R., Kim,W.
J., et al. (2012). MR traceable delivery of p53 tumor suppressor gene by
PEI-functionalized superparamagnetic iron oxide nanoparticles. J. Biomed.
Nanotechnol.8,361–371.doi:10.1166/jbn.2012.1407
Lee, J.H.,Huh,Y.M., Jun, Y.W., Seo, J.W., Jang, J. T., Song,H.T., et al. (2007).
Artificially engineered magnetic nanoparticles for ultra-sensitive molecular
imaging.Nat.Med.13,95–99.doi:10.1038/nm1467
Lee, J. H., Lee, K.,Moon, S. H., Lee, Y., Park, T. G., andCheon, J. (2009a). All-
in-one target-cell-specificmagnetic nanoparticles for simultaneousmolecular
imaging and siRNAdelivery.Angew. Chem. Int. Ed Engl. 48, 4174–4179. doi:
10.1002/anie.200805998
Lee, J. H., Smith, M. A., Liu, W., Gold, E. M., Lewis, B., Song, H. T., et al.
(2009b).Enhancedstemcell trackingviaelectrostaticallyassembledfluorescent
SPION-peptide complexes. Nanotechnology 20, 355102. doi: 10.1088/0957-
4484/20/35/355102
Leek,R.D.,Lewis,C.E.,Whitehouse,R.,Greenall,M.,Clarke, J., andHarris,A.L.
(1996).Associationofmacrophageinfiltrationwithangiogenesisandprognosis
in invasivebreast carcinoma.CancerRes.56,4625–4629.
Legrand,N., Ploss, A., Balling, R., Becker, P. D., Borsotti, C., Brezillon,N., et al.
(2009). Humanizedmice formodeling human infectious disease: challenges,
progress, and outlook. Cell Host Microbe 6, 5–9. doi: 10.1016/j.chom.2009.
06.006
Levine,T.P., andChain,B.M.(1991).Thecellbiologyofantigenprocessing.Crit.
Rev.Biochem.Mol.Biol.26,439–473.doi:10.3109/10409239109086790
Li, F., Zhu, A., Song, X., Ji, L., and Wang, J. (2013). The internalization of
fluorescence-labeled PLA nanoparticles by macrophages. Int. J. Pharm. 453,
506–513.doi:10.1016/j.ijpharm.2013.06.033
Li, J.M.,Wang, Y. Y., Zhao,M. X., Tan, C. P., Li, Y. Q., Le, X. Y., et al. (2012).
MultifunctionalQD-basedco-deliveryof siRNAanddoxorubicin toHeLacells
for reversal of multidrug resistance and real-time tracking. Biomaterials 33,
2780–2790.doi:10.1016/j.biomaterials.2011.12.035
Liang, S.,Wang, Y., Yu, J., Zhang, C., Xia, J., and Yin, D. (2007). Surfacemod-
ified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-
magnetically targeted therapy. J. Mater. Sci. Mater. Med. 18, 2297–2302. doi:
10.1007/s10856-007-3130-6
Liu, K., and Rosenberg, S. A. (2001). Transduction of an IL-2 gene into human
melanoma-reactive lymphocytes results in their continued growth in the
absence of exogenous IL-2 and maintenance of specific antitumor activity.
J. Immunol.167,6356–6365.doi:10.4049/jimmunol.167.11.6356
Liu,R.B.,Engels,B.,Arina,A.,Schreiber,K.,Hyjek,E.,Schietinger,A.,etal.(2012).
DenselygranulatedmurineNKcellseradicatelargesolidtumors.CancerRes.72,
1964–1974.doi:10.1158/0008-5472.CAN-11-3208
Liu, Z., Cai,W., He, L., Nakayama, N., Chen, K., Sun, X., et al. (2007). In vivo
biodistribution and highly efficient tumour targeting of carbon nanotubes in
mice.Nat.Nanotechnol.2,47–52.doi:10.1038/nnano.2006.170 Liu,Z.,andLi,Z.(2014).MolecularImaginginTrackingTumor-SpecificCytotoxic
TLymphocytes (CTLs).Theranostics4,990–1001.doi:10.7150/thno.9268
Lu,J.,Feng,F.,andJin,Z.(2013).Cancerdiagnosisandtreatmentguidance:roleof
MRIandMRIprobes in theeraofmolecular imaging.Curr.Pharm.Biotechnol.
14,714–722.
Lu, Y., Kawakami, S., Yamashita, F., andHashida,M. (2007).Development of an
antigen-presenting cell-targetedDNAvaccine againstmelanomabymannosy-
lated liposomes.Biomaterials 28, 3255–3262. doi: 10.1016/j.biomaterials.2007.
03.028
Ma, W., Chen, M., Kaushal, S., McElroy, M., Zhang, Y., Ozkan, C., et al.
(2012). PLGA nanoparticle-mediated delivery of tumor antigenic peptides
elicits effective immune responses. Int. J. Nanomedicine 7, 1475–1487. doi:
10.2147/IJN.S29506
Ma,Y., Shurin,G.V., Peiyuan,Z., andShurin,M.R. (2013).Dendritic cells in the
cancermicroenvironment. J.Cancer4,36–44.doi:10.7150/jca.5046
Madru, R., Kjellman, P., Olsson, F.,Wingardh, K., Ingvar, C., Stahlberg, F., et al.
(2012). 99mTc-labeled superparamagnetic ironoxidenanoparticles formulti-
modality SPECT/MRIof sentinel lymphnodes. J.Nucl.Med.53, 459–463.doi:
10.2967/jnumed.111.092437
Mahapatro, A., and Singh, D. K. (2011). Biodegradable nanoparticles are
excellent vehicle for site directed in-vivo delivery of drugs and vaccines.
J.Nanobiotechnology9,55.doi:10.1186/1477-3155-9-55
Mahmoud, S.M., Paish, E.C., Powe,D.G.,Macmillan,R.D.,Grainge,M. J., Lee,
A.H., et al. (2011).Tumor-infiltratingCD8+ lymphocytespredict clinicalout-
come in breast cancer. J. Clin. Oncol. 29, 1949–1955. doi: 10.1200/JCO.2010.
30.5037
Mandal, S., Eksteen-Akeroyd, Z. H., Jacobs, M. J., Hammink, R., Koepf, M.,
Lambeck, A. J. A., et al. (2013). Therapeutic nanoworms: towards novel
synthetic dendritic cells for immunotherapy. Chem. Sci. 4, 4168–4174. doi:
10.1039/C3sc51399h
Manolova, V., Flace, A., Bauer,M., Schwarz, K., Saudan, P., and Bachmann,M.
F. (2008).Nanoparticles target distinct dendritic cell populations according to
their size.Eur. J. Immunol.38,1404–1413.doi:10.1002/eji.200737984
Mantovani, A., and Sica, A. (2010).Macrophages, innate immunity and cancer:
balance, tolerance, and diversity.Curr. Opin. Immunol. 22, 231–237. doi: 10.
1016/j.coi.2010.01.009
Marcu-Malina, V., Heijhuurs, S., Van Buuren, M., Hartkamp, L., Strand, S.,
Sebestyen, Z., et al. (2011). Redirecting alphabeta T cells against cancer cells
by transfer of a broadly tumor-reactive gammadeltaT-cell receptor.Blood 118,
50–59.doi:10.1182/blood-2010-12-325993
Matsumura,Y., andMaeda,H. (1986).Anewconcept formacromolecular thera-
peutics in cancer chemotherapy:mechanismof tumoritropic accumulationof
proteinsandtheantitumoragent smancs.CancerRes.46,6387–6392.
Mellman,I.,Coukos,G.,andDranoff,G.(2011).Cancer immunotherapycomesof
age.Nature480,480–489.doi:10.1038/nature10673
Messina, J. L., Fenstermacher, D. A., Eschrich, S., Qu, X., Berglund, A. E., Lloyd,
M.C., et al. (2012). 12-Chemokine gene signature identifies lymphnode-like
structures inmelanoma:potential forpatientselectionforimmunotherapy?Sci.
Rep.2:765.doi:10.1038/srep00765
Mishra,R.,Chen,A.T.,Welsh,R.M., andSzomolanyi-Tsuda, E. (2010).NKcells
and gammadelta T cellsmediate resistance to polyomavirus-induced tumors.
PLoSPathog.6:e1000924.doi:10.1371/journal.ppat.1000924
Mizrahy,S., andPeer,D. (2012).Polysaccharidesasbuildingblocks fornanothera-
peutics.Chem.Soc.Rev.41,2623–2640.doi:10.1039/c1cs15239d
Morales-Avila, E., Ferro-Flores,G.,Ocampo-Garcia, B. E.,DeLeon-Rodriguez, L.
M., Santos-Cuevas, C. L., Garcia-Becerra, R., et al. (2011).Multimeric system
of99mTc-labeledgoldnanoparticlesconjugatedtoc[RGDfK(C)]formolecular
imaging of tumor alpha(v)beta(3) expression.Bioconjug. Chem. 22, 913–922.
doi:10.1021/bc100551s
Morales-Avila, E., Ferro-Flores,G.,Ocampo-Garcia, B. E., andGomez-Olivan, L.
M. (2012). EngineeredmultifunctionalRGD-goldnanoparticles for thedetec-
tion of tumour-specific alpha(v)beta(3) expression: chemical characterisation
and ecotoxicological risk assessment. J. Biomed.Nanotechnol. 8, 991–999. doi:
10.1166/jbn.2012.1452
Nam, S. J., Go,H., Paik, J. H., Kim, T.M.,Heo,D. S., Kim,C.W., et al. (2014).
AnincreaseofM2macrophagespredictspoorprognosis inpatientswithdiffuse
largeB-cell lymphomatreatedwithrituximab,cyclophosphamide,doxorubicin,
vincristine and prednisone. Leuk. Lymphoma. 55, 2466–2476. doi: 10.3109/
10428194.2013.879713
www.frontiersin.org November2014 |Volume2 |Article105 | 90
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie