Seite - 92 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 92 -
Text der Seite - 92 -
Conniotet al. Nanocarriers for immunecell targetingand tracking
Santra, S., andMalhotra, A. (2011). Fluorescent nanoparticle probes for imaging
of cancer.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 501–510. doi:
10.1002/wnan.134
Schlosser, E., Mueller, M., Fischer, S., Basta, S., Busch, D. H., Gander, B., et al.
(2008). TLR ligands and antigen need to be coencapsulated into the same
biodegradablemicrosphereforthegenerationofpotentcytotoxicTlymphocyte
responses.Vaccine26,1626–1637.doi:10.1016/j.vaccine.2008.01.030
Schreiber,R.D.,Old,L. J., andSmyth,M. J. (2011).Cancer immunoediting: inte-
grating immunity’s roles in cancer suppression and promotion. Science 331,
1565–1570.doi:10.1126/science.1203486
Sen, D., Deerinck, T. J., Ellisman,M.H., Parker, I., and Cahalan,M. D. (2008).
Quantumdots for tracking dendritic cells and priming an immune response
invitroand invivo.PLoSONE3:e3290.doi:10.1371/journal.pone.0003290
Settles,M.,Etzrodt,M.,Kosanke,K., Schiemann,M.,Zimmermann,A.,Meier,R.,
et al. (2011).Different capacityofmonocyte subsets tophagocytose iron-oxide
nanoparticles.PLoSONE6:e25197.doi:10.1371/journal.pone.0025197
Shahar, E., Gorodetsky, R., Gaberman, E., Aizenshtein, E., and Pitcovski, J.
(2010). Targeted microbeads for attraction and induction of specific innate
immuneresponse inthetumormicroenvironment.Vaccine28,7279–7287.doi:
10.1016/j.vaccine.2010.08.083
Shankaran,V., Ikeda,H.,Bruce,A.T.,White, J.M., Swanson,P.E.,Old,L. J., et al.
(2001). IFNgamma and lymphocytes prevent primary tumour development
and shape tumour immunogenicity.Nature 410, 1107–1111. doi: 10.1038/350
74122
Sharma,A., Jain,N., andSareen,R. (2013).Nanocarriers fordiagnosis and target-
ingofbreast cancer.BiomedRes. Int.2013:960821.doi:10.1155/2013/960821
Sharp, F.A., Ruane,D.,Claass, B.,Creagh, E.,Harris, J.,Malyala, P., et al. (2009).
Uptake of particulate vaccine adjuvants bydendritic cells activates theNALP3
inflammasome.Proc. Natl. Acad. Sci. U.S.A. 106, 870–875. doi: 10.1073/pnas.
0804897106
Shen, H., Ackerman, A. L., Cody, V., Giodini, A., Hinson, E. R., Cresswell, P.,
et al. (2006). Enhanced and prolonged cross-presentation following endoso-
malescapeofexogenousantigensencapsulated inbiodegradablenanoparticles.
Immunology117,78–88.doi:10.1111/j.1365-2567.2005.02268.x
Shen,L.,Higuchi,T.,Tubbe, I.,Voltz,N.,Krummen,M.,Pektor,S., etal. (2013).A
trifunctionaldextran-basednanovaccine targetsandactivatesmurinedendritic
cells, and inducespotentcellularandhumoral immuneresponses invivo.PLoS
ONE8:e80904.doi:10.1371/journal.pone.0080904
Shi,H.,He,X.,Yuan,Y.,Wang,K.,andLiu,D.(2010).Nanoparticle-basedbiocom-
patibleandlong-lifemarkerfor lysosomelabelingandtracking.Anal.Chem.82,
2213–2220.doi:10.1021/ac902417s
Shields, J.D.,Kourtis, I.C.,Tomei,A.A.,Roberts, J.M., andSwartz,M.A. (2010).
Inductionof lymphoidlike stromaand immune escapeby tumors that express
thechemokineCCL21.Science328,749–752.doi:10.1126/science.1185837
Shime, H., Matsumoto, M., Oshiumi, H., Tanaka, S., Nakane, A., Iwakura, Y.,
et al. (2012).Toll-like receptor 3 signaling converts tumor-supportingmyeloid
cells to tumoricidal effectors.Proc.Natl.Acad. Sci.U.S.A.109, 2066–2071. doi:
10.1073/pnas.1113099109
Shimizu,K.,Mizuno,T., Shinga, J.,Asakura,M.,Kakimi,K., Ishii,Y., et al. (2013).
Vaccinationwithantigen-transfected,NKTcell ligand-loaded,humancellselic-
its robust in situ immune responses by dendritic cells.Cancer Res. 73, 62–73.
doi:10.1158/0008-5472.CAN-12-0759
Shubayev, V. I., Pisanic, T. R. 2nd., and Jin, S. (2009). Magnetic nanoparticles
for theragnostics.Adv.DrugDeliv. Rev. 61, 467–477. doi: 10.1016/j.addr.2009.
03.007
Sica,A., andMantovani,A. (2012).Macrophageplasticityandpolarization: invivo
veritas. J.Clin. Invest.122,787–795.doi:10.1172/JCI59643
Sica,A., Schioppa,T.,Mantovani,A., andAllavena, P. (2006). Tumour-associated
macrophages are a distinctM2 polarised population promoting tumour pro-
gression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727.
doi:10.1016/j.ejca.2006.01.003
Silva, J.M.,Videira,M.,Gaspar,R., Preat,V., andFlorindo,H.F. (2013). Immune
systemtargetingbybiodegradablenanoparticles for cancervaccines. J.Control.
Release168,179–199.doi:10.1016/j.jconrel.2013.03.010
Sims,G.P.,Rowe,D.C.,Rietdijk,S.T.,Herbst,R.,andCoyle,A. J. (2010).HMGB1
andRAGEin inflammationandcancer.Annu.Rev. Immunol.28,367–388.doi:
10.1146/annurev.immunol.021908.132603
Singh,R., andLillard, J.W. Jr. (2009).Nanoparticle-based targeteddrugdelivery.
Exp.Mol.Pathol.86,215–223.doi:10.1016/j.yexmp.2008.12.004 Slovin, S. F., Ragupathi, G., Musselli, C., Olkiewicz, K., Verbel, D., Kuduk, S.
D., et al. (2003). Fully synthetic carbohydrate-based vaccines in biochemically
relapsedprostatecancer:clinicaltrialresultswithalpha-N-acetylgalactosamine-
O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21, 4292–4298. doi:
10.1200/JCO.2003.04.112
Smirnov, P., Lavergne, E., Gazeau, F., Lewin, M., Boissonnas, A., Doan, B. T.,
et al. (2006). In vivo cellular imaging of lymphocyte trafficking by MRI: a
tumormodelapproach tocell-basedanticancer therapy.Magn.Reson.Med.56,
498–508.doi:10.1002/mrm.20996
Smith, P. J.,Giroud,M.,Wiggins,H. L.,Gower, F., Thorley, J. A., Stolpe, B., et al.
(2012). Cellular entry of nanoparticles via serum sensitive clathrin-mediated
endocytosis, and plasmamembrane permeabilization. Int. J. Nanomedicine 7,
2045–2055.doi:10.2147/IJN.S29334
Sosnovik, D. E., and Nahrendorf, M. (2012). Cells and iron oxide nanoparti-
cles on the move: magnetic resonance imaging of monocyte homing and
myocardial inflammation in patients with ST-elevation myocardial infarc-
tion.Circ. Cardiovasc. Imaging 5, 551–554. doi: 10.1161/CIRCIMAGING.112.
978932
Sperling,R.A.,andParak,W.J.(2010).Surfacemodification,functionalizationand
bioconjugationofcolloidal inorganicnanoparticles.Philos.Trans.AMath.Phys.
Eng.Sci.368,1333–1383.doi:10.1098/rsta.2009.0273
Spranger,S., Spaapen,R.M.,Zha,Y.,Williams, J.,Meng,Y.,Ha,T.T., et al. (2013).
Up-regulation of PD-L1, IDO, andT(regs) in themelanoma tumormicroen-
vironment is driven by CD8(+) T cells. Sci. Transl. Med. 5, 200ra116. doi:
10.1126/scitranslmed.3006504
Srinivas,M.,Boehm-Sturm,P.,Figdor,C.G.,DeVries, I. J., andHoehn,M.(2012).
Labelingcells for invivo trackingusing(19)FMRI.Biomaterials33,8830–8840.
doi:10.1016/j.biomaterials.2012.08.048
Srinivas,M.,Turner,M. S., Janjic, J.M.,Morel, P.A., Laidlaw,D.H., andAhrens,
E.T. (2009). Invivocytometryof antigen-specific t cellsusing19FMRI.Magn.
Reson.Med.62,747–753.doi:10.1002/mrm.22063
Stelter, L., Pinkernelle, J. G., Michel, R., Schwartlander, R., Raschzok, N.,
Morgul,M. H., et al. (2010).Modification of aminosilanized superparamag-
netic nanoparticles: feasibility of multimodal detection using 3TMRI, small
animal PET, and fluorescence imaging. Mol. Imaging Biol. 12, 25–34. doi:
10.1007/s11307-009-0237-9
Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A., and Irvine, D. J. (2010).
Therapeutic cell engineeringwith surface-conjugated synthetic nanoparticles.
Nat.Med.16,1035–1041.doi:10.1038/nm.2198
Swann, J. B., and Smyth,M. J. (2007). Immune surveillance of tumors. J. Clin.
Invest.117,1137–1146.doi:10.1172/JCI31405
Tagami, T., Foltz, W. D., Ernsting, M. J., Lee, C. M., Tannock, I. F., May,
J. P., et al. (2011). MRI monitoring of intratumoral drug delivery and
prediction of the therapeutic effect with a multifunctional thermosensi-
tive liposome. Biomaterials 32, 6570–6578. doi: 10.1016/j.biomaterials.2011.
05.029
Tanaka, E., Choi, H. S., Fujii, H., Bawendi, M. G., and Frangioni, J. V.
(2006). Image-guided oncologic surgery using invisible light: completed pre-
clinical development for sentinel lymphnodemapping.Ann. Surg.Oncol. 13,
1671–1681.doi:10.1245/s10434-006-9194-6
Tari, A., Khodadadian, M., Ellerson, D., Deisseroth, A., and Lopez-Berestein,
G. (1996). Liposomal delivery of oligodeoxynucleotides. Leuk. Lymphoma 21,
93–97.doi:10.3109/10428199609067585
Thiele, L.,Merkle,H.P., andWalter, E. (2003).Phagocytosis andphagosomal fate
of surface-modifiedmicroparticles indendritic cells andmacrophages.Pharm.
Res.20,221–228.doi:10.1023/A:1022271020390
Thomas,L. (1982).Onimmunosurveillance inhumancancer.Yale J.Biol.Med.55,
329–333.
Thorek, D. L., and Tsourkas, A. (2008). Size, charge and concentration depen-
dent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29,
3583–3590.doi:10.1016/j.biomaterials.2008.05.015
Thu,M. S., Bryant, L.H., Coppola, T., Jordan, E.K., Budde,M.D., Lewis, B. K.,
et al. (2012). Self-assemblingnanocomplexes by combining ferumoxytol, hep-
arinandprotamine forcell trackingbymagnetic resonance imaging.Nat.Med.
18,463–467.doi:10.1038/nm.2666
Thu,M. S., Najbauer, J., Kendall, S. E., Harutyunyan, I., Sangalang, N., Gutova,
M.,etal. (2009). Ironlabelingandpre-clinicalMRIvisualizationof therapeutic
humanneural stem cells in amurine gliomamodel. PLoSONE 4:e7218. doi:
10.1371/journal.pone.0007218
www.frontiersin.org November2014 |Volume2 |Article105 | 92
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie