Seite - 99 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 99 -
Text der Seite - 99 -
Pearsonetal. Nanoparticlebiomoleculecorona
decreased therapeuticefficacyofNPs fordiseases suchaspancre-
atic cancer that requirenanotherapieswithparticles sizes smaller
than50nm(Cabral etal., 2011).
Consideringthosechangescausedbythebiomolecularcorona,
it appears essential to characterize the therapeutic and target-
ing efficacies of NPs under relevant conditions. Silicon dioxide
(SiO2)NPs were functionalized with Tf to validate their ability
tomaintain targeted interactions in physiologically relevant cell
cultureconditions.InFBS-containingmedium,Tf-functionalized
NPs lost their ability to selectively target A549 lung cancer cells
(Figures1C,D) (Salvati et al., 2013).Mirshafiee et al., prepared
75nmSiO2NPsand studied their ability to reactwith synthetic,
surface-bound azide groups using copper-free click chemistry
(Mirshafiee et al., 2013). The results of this study confirmed
that the biomolecular corona creates a barrier that screens the
interactionof the ligandandits targetonaseparate surface.
While NP characteristics, such as size, shape, and surface
charge, change due to biomolecular corona formation, drug
releasekineticsfromtheNPscaneitherbeenhancedordisrupted.
Liposomescanundergoshrinkageduetoosmotic forcesandmay
undergoaburst-release effectuponentering theblood, resulting
inrapiddrugrelease (Wolframetal., 2014b). Incontrast,protein
bindingonNPshasbeenshowntodelaydrugrelease,whichpre-
venteddrugdiffusion through theNPmatrix (Paula et al., 2013)
andreducedthebursteffect (Behzadietal., 2014).
The biomolecular corona may alter the toxicity profiles of
NPs in a positive manner as well. Evidence has accumulated
that the biomolecular corona may mitigate NP-induced toxic-
ities. Decreased negative cellular impacts of carbon nanotubes
were observed when they were coated with plasma proteins.
Nanotubes with a higher protein density displayed less toxic-
ity than those with a lower protein density (Ge et al., 2011).
The effect of the biomolecular corona of 22nm silicaNPswith
different surface charges on toxicity was also evaluated. The
corona formed on each NP was confirmed to be unique, and
SiO2-COOHNPs exhibited lower toxicity than bare SiO2 and
SiO2-NH2 (Mortensen et al., 2013). These results indicated that
NP-protein interactions can be utilized to reduce toxicities of
some NPs that are otherwise known to be toxic to biological
systems.
CONCLUSIONSANDFUTUREDIRECTIONS
Thebiomolecularcoronahasbeendemonstrated tohaveamajor
impactonthebiologicalbehaviorsofNPs.Physicochemicalprop-
erties ofNPs including size, surface charge, and hydrophobicity
affect the relative amounts, types, andconformationsofproteins
thatadsorbontotheNP.
NPs functionalizedwith disease-specific targeting ligands are
positioned to revolutionize the treatment of debilitating dis-
eases such as cancer by achieving targeted and selective cellular
interactions.However, thebiomolecularcoronadiminishes those
cellular interactions bymaking the ligands inaccessible at their
surfaces. Therefore, development of strategies to overcome the
negative impact of the protein corona onNP targeting is neces-
sary. Recently, attaching targeting ligands to longer PEG tethers
in combination with backfilling of the remaining bare surface
withshortPEGchainshasbeenshowntopromote the formation of targeted interactions in vitro (Dai et al., 2014). It is seem-
ingly obvious that characterization and biological evaluations
NPsmust be performed in the presence of physiologically rele-
vant protein levels, whichwill ultimately result in the enhanced
invivoefficacyof targeteddrugdeliveryplatforms.
ACKNOWLEDGMENTS
This work was partially supported by National Science
Foundation(NSF)underthegrant#DMR-1409161andNational
Cancer Institute (NCI) under the grant # R01 CA182580-01.
Ryan M. Pearson also acknowledges partial support from the
Dean’sScholarshipofUICforhisgraduateeducation.
REFERENCES
Aggarwal, P.,Hall, J. B.,McLeland,C.B.,Dobrovolskaia,M.A., andMcNeil, S. E.
(2009). Nanoparticle interactionwith plasma proteins as it relates to particle
biodistribution,biocompatibilityandtherapeuticefficacy.Adv.DrugDeliv.Rev.
61,428–437.doi:10.1016/j.addr.2009.03.009
Amoozgar, Z., andYeo, Y. (2012). Recent advances in stealth coating of nanopar-
ticledrugdelivery systems.Wiley Interdiscip.Rev.Nanomed.Nanobiotechnol.4,
219–233.doi:10.1002/wnan.1157
Ashby, J., Pan, S., and Zhong, W. (2014). Size and surface functionalization
of iron oxide nanoparticles influence the composition and dynamic nature
of their protein corona. ACS Appl. Mater. Interfaces 6, 15412–15419. doi:
10.1021/am503909q
Baugh,J.A.,andDonnelly,S.C.(2003).Macrophagemigrationinhibitoryfactor:a
neuroendocrinemodulatorofchronic inflammation. J.Endocrinol.179,15–23.
doi:10.1677/joe.0.1790015
Behzadi, S., Serpooshan,V., Sakhtianchi,R.,MĂĽller, B., Landfester,K.,Crespy,D.,
etal. (2014).Proteincoronachangethedrugreleaseprofileofnanocarriers: the
“overlooked” factor at thenanobio interface.Colloids Surf. BBiointerfaces.doi:
10.1016/j.colsurfb.2014.09.009. [Epubaheadofprint].
Bertoli, F.,Davies,G.-L.,Monopoli,M.P.,Moloney,M.,Gun’ko,Y.K., Salvati,A.,
et al. (2014).Magnetic nanoparticles to recover cellular organelles and study
the time resolved nanoparticle-cell interactome throughout uptake. Small 10,
3307–3315.doi:10.1002/smll.201303841
Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura,
M., et al. (2011). Accumulation of sub-100nm polymeric micelles in poorly
permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823. doi:
10.1038/nnano.2011.166
Cedervall, T., Lynch, I., Lindman, S., BerggĂĄrd, T., Thulin, E., Nilsson, H., et al.
(2007). Understanding the nanoparticle–protein corona using methods to
quantify exchange rates and affinities of proteins for nanoparticles.Proc.Natl.
Acad.Sci.U.S.A.104,2050–2055.doi:10.1073/pnas.0608582104
Chauhan, V. P., and Jain, R. K. (2013). Strategies for advancing cancer
nanomedicine.Nat.Mater.12,958–962.doi:10.1038/nmat3792
Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Itty Ipe, B., et al.
(2007). Renal clearance of quantumdots.Nat. Biotechnol. 25, 1165–1170. doi:
10.1038/nbt1340
Dai,Q.,Walkey,C.,andChan,W.C.W.(2014).Polyethyleneglycolbackfillingmit-
igates thenegative impactof theprotein coronaonnanoparticle cell targeting.
Angew.Chem. Int.Ed.Engl.53,5093–5096.doi:10.1002/anie.201309464
Fleischer, C.C., andPayne, C.K. (2014). Secondary structure of corona proteins
determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B.
doi:10.1021/jp502624n. [Epubaheadofprint].
Ge, C., Du, J., Zhao, L.,Wang, L., Liu, Y., Li, D., et al. (2011). Binding of blood
proteins to carbonnanotubes reduces cytotoxicity.Proc.Natl.Acad. Sci.U.S.A.
108,16968–16973.doi:10.1073/pnas.1105270108
Gu,F.X.,Karnik,R.,Wang,A.Z.,Alexis, F., Levy-Nissenbaum,E.,Hong, S., et al.
(2007). Targeted nanoparticles for cancer therapy.Nano Today 2, 14–21. doi:
10.1016/S1748-0132(07)70083-X
Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F., andMahmoudi, M. (2014).
Personalizedprotein coronas: a “key” factor at thenanobiointerface.Biomater.
Sci.2,1210–1221.doi:10.1039/C4BM00131A
Hellstrand,E., Lynch, I.,Andersson,A.,Drakenberg,T.,Dahlbäck,B.,Dawson,K.
A., et al. (2009). Complete high-density lipoproteins in nanoparticle corona.
FEBSJ.276,3372–3381.doi:10.1111/j.1742-4658.2009.07062.x
www.frontiersin.org November2014 |Volume2 |Article108 | 99
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie