Seite - 50 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 50 -
Text der Seite - 50 -
3. ModelingMicrowaveHeating
Thenthere
isâ„â„â„ââEnâ„â„â„2=EnTEn
= Enx 2+Eny 2+Enz 2
= (
EnxV )T EnxV+ (
EnyV )T EnyV+ (
EnzV )T EnzV
=VTEnx TEnxV+V TEny TEnyV+V TEnz TEnzV
=VT (
Enx TEnx+E
n
y TEny+E n
z TEnz )
V (3.26)
The original microwave heating power Pnmw can be rewritten using
equation 3.26as
Pnmw= 1
2 l3Ïe(T) · â„â„â„ââEnâ„â„â„2
= 1
2 l3Ïe(T) ·VT (
Enx TEnx+E n
y TEny+E
n
z TEnz )
V
=VT [Ίnc(T)]V, (3.27)
where thematrix [Ίnc(T)] isdefinedby
[Ίnc(T)] := 1
2 l3Ïe(T) · (
Enx TEnx+E
n
y TEny+E
n
z TEnz )
. (3.28)
The matrix [Ίnc(T)] is aMĂM symmetric square matrix, which is
the effective heating matrix at this location n, and V is the control
input vector that has to be calculated by a controller. In contrast to
thecaseofscalarsuperposition, thevectorsuperpositionrule ismuch
more complicated due to its high computation complexity. However,
it is accurate and effective to describe the power superposition of mi-
crowave heating systems with multiple feeding sources, as shown by
thesimulationresults in [BPJD99]and[THN01].
3.2.3. FormulationandDiscretization
In this section, above approximations 3.15, 3.18 and 3.27 will be
further formulated and the resulted equations will be discretized, to
50
zurĂŒck zum
Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- MikrowellenerwĂ€rmung, MehrgröĂenregelung, ModellprĂ€diktive Regelung, KĂŒnstliches neuronales Netz, BestĂ€rkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik