Seite - 60 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 60 -
Text der Seite - 60 -
3. ModelingMicrowaveHeating
error and then the estimationθne will jump away from the current
statequickly. In thisdissertationr= 100 isused.
• RecursiveKalmanfilter (RKF)
Kalman filter [Rib04] is another powerful algorithm that has been
widely implemented in adaptive filtering, adaptive control and
systemidentificationareas. InRKFthesystemisassumedthesame
as in theRLSalgorithmas
Ynr (k) = θ n(k−1)Πn(k−1)+ ς(k), (3.58)
θn(k−1) = θn(k−2)+ε(k−2), (3.59)
where ς(k) is themeasurementerroras inequation 3.52andε(k−
2) is the white noise as in equation 3.51. This assumption also
providesRKFtheability to track time-varyingparameters.
ThecompleteupdateprocessofRKFcanbedividedintotwoparts.
The first part is the prediction of the unknown vectors at the cur-
renttimek,basedonthedataobtainedattheformertimestepk−1,
asgiven in [Rib04]withk≥2
θnp(k−1)
=θne(k−2),[
Pnp(k−1) ]
= [Pne(k−2)]+[Ω]. (3.60)
The first equation in 3.60 indicates that the predicted coefficient
vectorθp(k−1)based on the old data is the equivalent to the pre-
vious estimation θe(k−2). The influence of the unknown noise
variableε(k−1) is reflected in the second equation, where the co-
variance matrix of prediction errorPp(k) equals to the covariance
matrix of the previous estimation error Pe(k−1) plus the covari-
ancematrixof thenoiseΩ.
The second part is called estimation, which is to estimate the cur-
rent variables using the currently measured temperatures and for-
60 merpredictions, suchasgiven in [Rib04]withk≥2
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik