Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Seite - 62 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 62 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Bild der Seite - 62 -

Bild der Seite - 62 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Text der Seite - 62 -

3. ModelingMicrowaveHeating of both RLS and RKF is compared in real experiments, which will be presented inchapter 4. NonlinearRecursiveSystemIdentification Thetaskofnonlinearrecursivesystemidentification is toestimate the matrices [An(k−1)] and [Φn(k−1)] in equation 3.46. Compared with the linear case, the nonlinear system identification process is more complicated because of the nonlinear heating term Ψ. There is no way to combine the parameterAn(k−1) and the effective heating matrix [Φn(k−1)] inonematrix (as in thevectorθn(k)), andestimate them at the same time. Instead, in the nonlinear system identifica- tion, a two-step identification procedure has been developed, to es- timate them separately at different time using the extended Kalman filter (EKF)method. ThisestimationisalsoappliedontheMISO-form model,which issimilaras in the linearcase. • Step1: Estimate thefirstpart [A(k−1)] This step is done during the cooling part or whenever no power is injected from the microwave sources (vm(k) = 0 for all 1≤m≤ M). Since the input vector is zero, the nonlinear MIMO system model (equation 3.46) can be decomposed intoNMISO systems, suchas Yn(k) =An(k−1)Yn(k−1), 1≤n≤N. (3.62) TheparameterAn(k−1)canbeestimateddirectlyas An(k−1) =Yn(k)/Yn(k−1), 1≤n≤N. (3.63) • Step2: Estimate theeffectiveheatingmatrix [Φn(k−1)] WhentheinputvectorV isnotzero, thestateparameterAn(k−1) isassumedtobeconstantlikeAn(k−1) =Anct,whereAnct is thelast updated value ofAn. This assumption is valid in practice because the parameterAn(k−1) is mainly determined by the convection heattransfercoefficienth (seeequation 3.15andthecomparisonin equation 3.14) which is a constant. The varying part ofAn(k−1) 62
zurück zum  Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Titel
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Autor
Yiming Sun
Verlag
KIT Scientific Publishing
Ort
Karlsruhe
Datum
2016
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0467-2
Abmessungen
14.8 x 21.0 cm
Seiten
260
Schlagwörter
Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources