Seite - 66 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 66 -
Text der Seite - 66 -
3. ModelingMicrowaveHeating
timator is introduced in this section, and the NN controller will be
addressed inchapter 4.
3.3.1. IntroductionofNeuralNetwork
Theneuralnetwork(NN)structurewasoriginallyinspiredbythecon-
cept of biological neural networks, and then gradually extended and
extensivelyutilizedindifferentareas. Incontrolengineering, it iscon-
sidered as a powerful alternative to conventional modeling and con-
trolmethods [LV09]. Ithasbeenprovenin[HSW89] that,with theap-
propriate network architecture, a multilayer feedforward neural net-
work is a universal approximator for all kinds of linear and nonlinear
dynamics. Due to this universal approximation ability, NN has be-
come one of the most popular system identification methods that are
applied invariousapplications.
N1,1
N1,2 N2,1
N2,2
N2,3 N3,1
Input Layer Hidden Layer
Output Layer
W11,1 W21,1
Y1
u1
W13,3
Bias = 1 N3,2 Y2
W22,4
Bias = 1
u2
Figure3.4. Neuralnetworkstructure
A basic NN structure is illustrated in figure 3.4. Normally it con-
sists of several elements such as nodes, synaptic links and weights. A
66
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik