Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Seite - 68 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 68 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Bild der Seite - 68 -

Bild der Seite - 68 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Text der Seite - 68 -

3. ModelingMicrowaveHeating 0 4-4 0.5 1 8-8 (a)Unit step 0 4-4 0.5 1 8-8 (b)Piecewise linear 0 4-4 0.5 1 8-8 (c)Sigmoidaccordingto [HDB+96] 0 4-4 1 8-8 -1 (d)Tanh(equation 3.69) Figure3.5. Illustrationofdifferentactivationfunctions. orfeaturethat is fedfromtheinputlayer,extract themorevaluablein- formationfromtherawinformation,andthentransmitit totheoutput layer for thefinaldetermination[AN15]. In other words, the task being solved by the neural network can be decomposed into a number of small subproblems, and subproblems are solved and united layer by layer. Theoretically, the neural net- workswithmorehiddenlayers(alsoknownasdeepneuralnetworks) are able to perform more complicated and accurate approximations to highly dynamic systems, and have a better performance than the so-called shallow networks that have only one or few hidden layers. However, in deep neural networks there are a number of obstacles thatarestillnotwellunderstood,suchasthevanishinggradientprob- lem [BSF94] or influences caused by weight initializations [SMDH13]. In practice as well as many literatures [Hay98], it is suggested to use a neural network with an appropriate number of layers instead of a deepnetwork. 68
zurück zum  Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Titel
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Autor
Yiming Sun
Verlag
KIT Scientific Publishing
Ort
Karlsruhe
Datum
2016
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0467-2
Abmessungen
14.8 x 21.0 cm
Seiten
260
Schlagwörter
Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources