Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Seite - 75 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 75 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Bild der Seite - 75 -

Bild der Seite - 75 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Text der Seite - 75 -

3.3. Black-boxModeling istakenintoaccountineachupdate. Thereforeallweightsareupdated Q times in one epoch, starting from the first date pair ( UNN(1),Y(1) ) until the lastdatapair ( UNN(Q),Y(Q) ) isaccountedfor. Online learning is a special incremental learning, with only one data pair is available at one time, therefore the cost function 3.74 can be rewritten inaonline formas JOL(k) = 1 2 ( YNN(k)−Yd(k) )T( YNN(k)−Yd(k) ) , (3.75) whereYNN(k) is theestimatedoutputfromtheNNatthecurrenttime k and Yd(k) is the desired (real measured) output of the system at time k. Online supervised learning is similar with the online system identificationintroducedinthegrey-boxmodelingpart,whichismore suitable todescribe thedynamicsof time-varyingsystems. NeuralNetworkModelingApproachesusedinHEPHAISTOS The implementation of neural networks in the temperature control system of HEPHAISTOS is straightforward compared with the grey- box modeling approaches. The aforementioned two learning strate- giesarebothusedtosolvedifferent tasks,as infigure 3.8. Neural Network Estimator Controller Trained by historical Data Set D Target temperature Yt Control input U Estimated temperature YNN (a)Batch learningapproach(offline) In the first approach (see figure 3.8a), batch learning is used to train theNNestimator. Thiswell-trainedNNisemployedasanapproxima- tionoftherealplanttotest theperformanceofdifferentsystemidenti- fication algorithms or control methods. For example, in the controller designpart,acontrollercouldbefirstlydesignedtocontrol thisNNin 75
zurück zum  Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Titel
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Autor
Yiming Sun
Verlag
KIT Scientific Publishing
Ort
Karlsruhe
Datum
2016
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0467-2
Abmessungen
14.8 x 21.0 cm
Seiten
260
Schlagwörter
Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources