Seite - 75 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 75 -
Text der Seite - 75 -
3.3. Black-boxModeling
istakenintoaccountineachupdate. Thereforeallweightsareupdated
Q times in one epoch, starting from the first date pair (
UNN(1),Y(1)
)
until the lastdatapair (
UNN(Q),Y(Q) )
isaccountedfor.
Online learning is a special incremental learning, with only one data
pair is available at one time, therefore the cost function 3.74 can be
rewritten inaonline formas
JOL(k) = 1
2 ( YNN(k)−Yd(k)
)T( YNN(k)−Yd(k)
)
, (3.75)
whereYNN(k) is theestimatedoutputfromtheNNatthecurrenttime
k and Yd(k) is the desired (real measured) output of the system at
time k. Online supervised learning is similar with the online system
identificationintroducedinthegrey-boxmodelingpart,whichismore
suitable todescribe thedynamicsof time-varyingsystems.
NeuralNetworkModelingApproachesusedinHEPHAISTOS
The implementation of neural networks in the temperature control
system of HEPHAISTOS is straightforward compared with the grey-
box modeling approaches. The aforementioned two learning strate-
giesarebothusedtosolvedifferent tasks,as infigure 3.8.
Neural Network
Estimator
Controller Trained by historical Data Set D
Target
temperature
Yt Control input
U Estimated
temperature
YNN
(a)Batch learningapproach(offline)
In the first approach (see figure 3.8a), batch learning is used to train
theNNestimator. Thiswell-trainedNNisemployedasanapproxima-
tionoftherealplanttotest theperformanceofdifferentsystemidenti-
fication algorithms or control methods. For example, in the controller
designpart,acontrollercouldbefirstlydesignedtocontrol thisNNin
75
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik