Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Seite - 76 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 76 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Bild der Seite - 76 -

Bild der Seite - 76 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Text der Seite - 76 -

3. ModelingMicrowaveHeating Neural Network Estimator Yr(k-1) ∑ - + Yr(k) e (k) U(k-1) YNN(k) (b)Online learningapproach Figure3.8. Neuralnetworkapproachesusedin thisdissertation. anofflinemode. Duringtheprocessof thecontrolling theNNestima- tor, thecontrollerbecomesmoreandmorefamiliarwith therealplant and finally it can be used to control the real plant. This method has been widely used for controller design such as in [Sch90], [WMS92], [LN95] and [GHLZ10]. In this case, an amount of historical exper- imental data can be used and the batch learning mode is preferred over incremental learning,dueto themorestable learningresultsand fasterconvergingspeed. But the limitationof thisapproachis that thecontroller trainedbythis NNestimatorisnotguaranteedtohavethesameperformanceinprac- tice as in the test. That is because in HEPHAISTOS, the real heating process is influencedbymanydifferentfactorsandit isnotpossibleto obtainexperimentaldata thatcancoveralldynamicsof theplant. De- spiteof this limitation, thisNNestimatorstillprovidesvaluable infor- mationandtheperformanceonitcanbeconsideredasthebenchmark tocompareandselectdifferentcontrolmethods. Thesecondapproach is touseaNNestimator foronlinesystemiden- tification (see figure 3.8b), which functions similarly with the online system identification algorithms introduced in the grey-box model- ing part. In this approach, the input of the NN estimatorUNN ( with the dimension (N+M)×1) contains the former temperature vector Yr(k−1)andthecontrol inputvectorU(k−1), suchas UNN(k) = [ Yr(k−1) U(k−1) ] . (3.76) 76
zurück zum  Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Titel
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Autor
Yiming Sun
Verlag
KIT Scientific Publishing
Ort
Karlsruhe
Datum
2016
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0467-2
Abmessungen
14.8 x 21.0 cm
Seiten
260
Schlagwörter
Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources