Seite - 76 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 76 -
Text der Seite - 76 -
3. ModelingMicrowaveHeating
Neural Network
Estimator
Yr(k-1)
∑
- + Yr(k)
e (k)
U(k-1) YNN(k)
(b)Online learningapproach
Figure3.8. Neuralnetworkapproachesusedin thisdissertation.
anofflinemode. Duringtheprocessof thecontrolling theNNestima-
tor, thecontrollerbecomesmoreandmorefamiliarwith therealplant
and finally it can be used to control the real plant. This method has
been widely used for controller design such as in [Sch90], [WMS92],
[LN95] and [GHLZ10]. In this case, an amount of historical exper-
imental data can be used and the batch learning mode is preferred
over incremental learning,dueto themorestable learningresultsand
fasterconvergingspeed.
But the limitationof thisapproachis that thecontroller trainedbythis
NNestimatorisnotguaranteedtohavethesameperformanceinprac-
tice as in the test. That is because in HEPHAISTOS, the real heating
process is influencedbymanydifferentfactorsandit isnotpossibleto
obtainexperimentaldata thatcancoveralldynamicsof theplant. De-
spiteof this limitation, thisNNestimatorstillprovidesvaluable infor-
mationandtheperformanceonitcanbeconsideredasthebenchmark
tocompareandselectdifferentcontrolmethods.
Thesecondapproach is touseaNNestimator foronlinesystemiden-
tification (see figure 3.8b), which functions similarly with the online
system identification algorithms introduced in the grey-box model-
ing part. In this approach, the input of the NN estimatorUNN (
with
the dimension (N+M)×1) contains the former temperature vector
Yr(k−1)andthecontrol inputvectorU(k−1), suchas
UNN(k) = [ Yr(k−1)
U(k−1) ]
. (3.76)
76
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik