Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Seite - 103 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 103 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Bild der Seite - 103 -

Bild der Seite - 103 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Text der Seite - 103 -

4.1. AdaptiveControl andtheneuralnetworkcontroller is representedby U(k) =G(Yt(k),Y(k),w(k)) , w(k) = [ w1(k), w2(k), . . ., wNw(k) ]T (4.21) whereF is the function that describes the dynamics of the real plant, G is thefunctionoftheNNcontroller. andw(k) is theweightvectorof the NN controller (Nw×1). Equation 4.21 means the control action is directly calculated based on the target and current measured temper- atures as well as the weights of the NN. With the same cost function inequation 4.2, theobjectiveofunsupervised learning in thisNNCis defined to find the optimal weight vector w∗ that minimizes the cost function,which is w∗= argwminJ(k) ⇒ ∂J(k) ∂w∗ = 0. (4.22) The weight update in the NN controller still uses the standard gradi- ent descent principle, following the direction that minimizes the cost function, suchas w(k+1) =w(k)−α(k) · ∂J(k) ∂w ∣∣∣∣ k =w(k)−α(k) · ∂J(k) ∂Y · ∂Y ∂U · ∂U ∂w ∣∣∣∣ k , (4.23) whereα(k) is thestepsizeof theupdate. If the dynamics of the real plantF is perfectly known, the partial dif- ferentiation ∂Y/∂U can be calculated and the gradient term can be directly implemented. However, for most cases, including HEPHAIS- TOS, therealdynamicsof thecontrolledplant is incompletelyknown, andthepartialdifferential term∂Y/∂U isnotdirectlycomputable. In this case, a stochastic approximation (SA) algorithm [KY97] has to be applied[SC98] w(k+1) =w(k)−α(k) ·(approximatedgradient)k , (4.24) which replaces the true gradient by an approximated gradient to up- date theweightsof theNNcontroller. 103
zurück zum  Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Titel
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Autor
Yiming Sun
Verlag
KIT Scientific Publishing
Ort
Karlsruhe
Datum
2016
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0467-2
Abmessungen
14.8 x 21.0 cm
Seiten
260
Schlagwörter
Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources