Seite - 103 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 103 -
Text der Seite - 103 -
4.1. AdaptiveControl
andtheneuralnetworkcontroller is representedby
U(k) =G(Yt(k),Y(k),w(k)) ,
w(k) = [
w1(k), w2(k), . . ., wNw(k)
]T (4.21)
whereF is the function that describes the dynamics of the real plant,
G is thefunctionoftheNNcontroller. andw(k) is theweightvectorof
the NN controller (Nw×1). Equation 4.21 means the control action is
directly calculated based on the target and current measured temper-
atures as well as the weights of the NN. With the same cost function
inequation 4.2, theobjectiveofunsupervised learning in thisNNCis
defined to find the optimal weight vector w∗ that minimizes the cost
function,which is
w∗= argwminJ(k) ⇒ ∂J(k)
∂w∗ = 0. (4.22)
The weight update in the NN controller still uses the standard gradi-
ent descent principle, following the direction that minimizes the cost
function, suchas
w(k+1) =w(k)−α(k) · ∂J(k)
∂w ∣∣∣∣
k
=w(k)−α(k) · ∂J(k)
∂Y · ∂Y
∂U · ∂U
∂w ∣∣∣∣
k , (4.23)
whereα(k) is thestepsizeof theupdate.
If the dynamics of the real plantF is perfectly known, the partial dif-
ferentiation ∂Y/∂U can be calculated and the gradient term can be
directly implemented. However, for most cases, including HEPHAIS-
TOS, therealdynamicsof thecontrolledplant is incompletelyknown,
andthepartialdifferential term∂Y/∂U isnotdirectlycomputable. In
this case, a stochastic approximation (SA) algorithm [KY97] has to be
applied[SC98]
w(k+1) =w(k)−α(k) ·(approximatedgradient)k , (4.24)
which replaces the true gradient by an approximated gradient to up-
date theweightsof theNNcontroller.
103
zurück zum
Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik