Seite - (000056) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Bild der Seite - (000056) -
Text der Seite - (000056) -
48 6 Regulation
C(s)= √
2ρμ (√
ρ+√μ)s+ρμ
s2+√2(√ρ+√μ)s+(√ρ+√μ)2 ,
withassociatedminimizedcost,
J∗ =√2[μ2√ρ+ρ2√μ+2ρμ(√μ+√ρ)].
Forρ=1, thecontrollerbecomes
C(s)= √
2μ (
1+√μ)s+μ
s2+√2(1+√μ)s+(1+√μ)2 , (6.7)
withassociatedminimizedcost,
J∗ =√2[μ2+√μ+2μ(√μ+1)].
Wecanseethetradeoffsindesignmostclearlyfromthecontrollerwithρ=1.When
μ is small, loaddisturbance inputsare smaller thansensornoise inputs.Anoptimal
systemshould therefore tolerategreater sensitivity to loaddisturbances in returnfor
reducedsensitivity to sensornoise.
In the optimal controller described byEq. 6.7, a small value ofμproduces low
gain, becauseC(s)becomes smaller asμdeclines.Wecan see fromEq. 6.1 that a
small gain for the controller,C, reduces the sensitivity to noise inputs by lowering
Gun andGηn.Similarly,asmallgainforC raisesthesensitivityofthesystemoutput,
η, todisturbance inputsby raisingGηd.
The optimal system achieves the prescribed rise in sensitivity to disturbance in
order toachieve lower sensitivity tonoise.
6.3 ResonancePeakExample
This sectionapplies theprevious section’sH2 optimizationmethod to theprocess
P(s)= 1
s2+0.1s+1. (6.8)
Thisprocesshasa resonancepeaknearω=1.
MysupplementalMathematicacodederives theoptimalcontrollerof theformin
Eq.6.6.Theoptimalcontroller isexpressedin termsof thecostweightingsμandρ.
Thesolutionhasmany terms, so there isnobenefit in showing it here.
Control Theory Tutorial
Basic Concepts Illustrated by Software Examples
- Titel
- Control Theory Tutorial
- Untertitel
- Basic Concepts Illustrated by Software Examples
- Autor
- Steven A. Frank
- Verlag
- Springer Open
- Ort
- Irvine
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-319-91706-1
- Abmessungen
- 15.5 x 23.5 cm
- Seiten
- 114
- Schlagwörter
- Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
- Kategorie
- Informatik