Seite - (000077) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Bild der Seite - (000077) -
Text der Seite - (000077) -
9.1 RegulationExample 71
x = Ax + Bu yC
xd
K
u
u* .
Fig.9.1 Statefeedbackmodelofregulation.Theprocessandoutputdescribethestateequationsin
Eq.2.6.Thecontrol input signal,u∗ =Kx, is obtainedbyminimizing the cost function inEq.9.3
toderive theoptimal stategains.Adisturbance,d, is added to the input signal
equivalent to theerror,e= y−r,becausethereferenceinput isr =0.Acostbased
onu2 ande2matches theearlier cost function inEq.8.1.
Inthiscase,IweightthecostsforeachstateequallybylettingQ=ρ2I2, inwhich
In is theidentitymatrixofdimensionn,andρ is thecostweightingforstatesrelative
to inputs.With thosedefinitions, thecostbecomes
J = ∫ T
0 [
u2+ρ2(x21 +x22)]dt,
inwhichx21 +x22measuresthedistanceofthestatevectorfromthetargetequilibrium
ofzero.
We obtain the gain matrix for state feedback models, K, by solving a matrix
Riccati equation. Introductory texts on control theory derive theRiccati equation.
For our purposes,we can simply use a software package, such asMathematica, to
obtain the solution forparticular problems.See the supplemental software code for
anexample.
Figure9.2 shows the response of the state feedback system in Fig.9.1with the
Riccati solution for the feedback gain values,K.Within each panel, the different
curvesshowdifferentvaluesofρ, theratioofthestatecostsforx relativetotheinput
costs foru. In thefigure, the blue curves showρ=1/4,whichpenalizes the input
costs four timesmore than the state costs. In that case, thecontrol inputs tend tobe
costlyandweaker, allowing the statevalues tobe larger.
At the other extreme, the green curves showρ=4. That value penalizes states
moreheavilyandallowsgreatercontrol inputvalues.The larger inputcontrolsdrive
the statesback towardzeromuchmorequickly.Thefigure captionprovidesdetails
about eachpanel.
In thisexample, theunderlyingequationsfor thedynamicsdonotvarywithtime.
Time-invariant dynamics correspond to constant values in the statematrices,A,B,
andC.Atime-invariantsystemtypically leads toconstantvalues in theoptimalgain
matrix,K, obtainedbysolving theRiccati equation.
TheRiccatisolutionalsoworkswhenthosecoefficientmatriceshavetime-varying
values, leading to time-varying control inputs in the optimal gainmatrix,K. The
general approach can also be extended to nonlinear systems.However, theRiccati
equation isnot sufficient to solvenonlinearproblems.
Control Theory Tutorial
Basic Concepts Illustrated by Software Examples
- Titel
- Control Theory Tutorial
- Untertitel
- Basic Concepts Illustrated by Software Examples
- Autor
- Steven A. Frank
- Verlag
- Springer Open
- Ort
- Irvine
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-319-91706-1
- Abmessungen
- 15.5 x 23.5 cm
- Seiten
- 114
- Schlagwörter
- Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
- Kategorie
- Informatik