Seite - (000079) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Bild der Seite - (000079) -
Text der Seite - (000079) -
9.2 TrackingExample 73
withα=a+b=10.1andβ =ab=1.Thestate-spacemodel isgiven inEq.9.2,
expressed inmatrix form in Eq.9.4. The state-spacemodel describes the process
outputover time, y(t),whichweabbreviate as y.
Here, I describe a state-space design of tracking control for this process. For
this example, Iuse the tracking referencesignal inEq.8.3, ignoringhigh-frequency
noise (κ2 =0). The reference signal is the sum of low-frequency (ω0 =0.1) and
mid-frequency(ω1 =1)sinewaves.Thetransfer functionfor thereferencesignal is
R(s)= ω0
s2+ω20 + ω1
s2+ω21 .
In state-space form, the reference signal,r(t), is
Ar = ⎛
⎜⎜⎝ 0 1 0 0
0 0 1 0
0 0 0 1
−ω20ω21 0−ω20−ω21 0 ⎞
⎟⎟⎠
Br = (
0 0 0 1
)T
Cr = (
ω20ω1+ω0ω21 0ω0+ω1 0 )
.
Wecan transforma tracking problem into a regulator problemand then use the
methods from the previous chapter (Anderson andMoore 1989). In the regulator
problem,weminimizedacombinationofthesquaredinputsandstates.Foratracking
problem,weusetheerror,e= y−r, insteadofthestatevalues,andexpressthecost
as
J = ∫ T
0 (
u′Ru+e2)dt. (9.5)
Wecancombine the state-spaceexpressions for y andr intoa single state-space
modelwith output e. That combinedmodel allowsus to apply the regulator theory
to solve the trackingproblemwith state feedback.
Thecombinedmodel for the trackingproblemis
At = (
A 0
0 Ar )
Bt = (
B 0
0 Br )
Ct = (
C−Cr )
,
whichhasoutputdeterminedbyCtase= y−r (AndersonandMoore1989).Inthis
form,wecanapplytheregulator theorytofindtheoptimalstatefeedbackmatrix,K,
Control Theory Tutorial
Basic Concepts Illustrated by Software Examples
- Titel
- Control Theory Tutorial
- Untertitel
- Basic Concepts Illustrated by Software Examples
- Autor
- Steven A. Frank
- Verlag
- Springer Open
- Ort
- Irvine
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-319-91706-1
- Abmessungen
- 15.5 x 23.5 cm
- Seiten
- 114
- Schlagwörter
- Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
- Kategorie
- Informatik