Seite - (000094) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Bild der Seite - (000094) -
Text der Seite - (000094) -
Chapter12
ModelPredictiveControl
Control design often seeks the best trajectory alongwhich tomove a system from
its current state to a target state.Most control methods approximate this goal by
using thecurrent inputsandsystemstate tocalculate thenextcontrol signal todrive
system dynamics. That standard approach considers only the first step of the full
trajectory toward the target state. The idea is that estimating a good first step in
the right direction is sufficient,without considerationof the full trajectory fromthe
current location to thefinal target.
Model predictive control considers the full sequence of input steps required to
move the system optimally from its current state to a future target. The control
system then applies thefirst inputs to start the systemalong that optimal trajectory
(Rossiter2004;CamachoandBordons2007;Ellisetal.2014;RawlingsandMayne
2015).
Afterapplying the initial inputs, thesystemdoesnotuse theadditional sequence
ofcalculatedinputstocontinuealongtheplannedtrajectory.Instead,thesystemtakes
updatedmeasuresof the external target and the internal state.Thenew information
isusedtorecalculateanupdatedoptimal trajectory.Usingtheupdatedtrajectory, the
newlycalculatedfirst inputsare thenappliedtothesystem.Theprocessrepeatswith
eachnewroundofupdatedexternal and internal signals.
This approach considers a receding future horizon. At each point in time, the
systemcalculates theoptimal trajectory toaparticular timepoint in the future—the
horizon.Then,afterasmallamountof timepasses relative to thefuturehorizon, the
systemrecalculatesbytakingcurrent inputsandadvancingthefuturehorizonbythe
timeelapsed.
Intuitively, this approach seemssimilar tomanydecisionsmadebyhumans.We
estimate howwewill get to a goal, start off in the best direction, then update our
planasnewinformationarrives.
Our estimate of howwewill get to a goal depends on an internalmodel of our
dynamicsandonthemodulatingcontrolsignalsthatwewillusetoalterourdynamics.
Theself-correctingprocessof recalculating theplannedtrajectorymeans thatwedo
notneedanaccuratemodelofourinternaldynamicstoperformwell.Anapproximate
ormisspecifiedmodelofdynamicsoftenworkswell, even fornonlinearprocesses.
©TheAuthor(s)2018
S.A.Frank,ControlTheoryTutorial, SpringerBriefs inAppliedSciences
andTechnology,https://doi.org/10.1007/978-3-319-91707-8_12 91
Control Theory Tutorial
Basic Concepts Illustrated by Software Examples
- Titel
- Control Theory Tutorial
- Untertitel
- Basic Concepts Illustrated by Software Examples
- Autor
- Steven A. Frank
- Verlag
- Springer Open
- Ort
- Irvine
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-319-91706-1
- Abmessungen
- 15.5 x 23.5 cm
- Seiten
- 114
- Schlagwörter
- Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
- Kategorie
- Informatik