Seite - 13 - in Document Image Processing
Bild der Seite - 13 -
Text der Seite - 13 -
J. Imaging 2018,4, 68
taskbecause the imprintsduetoassignedvalues thatarenot inaccordancewith theneighborhood
haveunpleasantvisualeffects, anddestroy theoriginal lookof therestoreddocument. Thesimple
replacementwiththepredominantgraylevelvalueof thelocalbackgrounddoesnotsolvetheproblem.
Toremedythisissue,anon-localgroupbasedadaptivesparseimageinpaintingissuggestedtoestimate
plausiblefill-invalues toreplace the identifiedbleed-throughpixels. The inclusionofnon-local similar
patches encourages the consistency in localfine textures,withoutblockingor smoothingartefacts.
Theproposedimageinpaintingmethodefficientlyemploystheintrinsic localsparsityandthenon-local
patchsimilarity. Theperformanceof theproposedmethod is comparedwithother state-of-the-art
methodsonadatabaseof recto-versodocumentswithbleed-throughdegradation.
AuthorContributions:M.H.conceivedandimplementedthesparserepresentation inpaintingmethod, runthe
experimentsandwrote thepaper. A.T. suggested theproblem,devised therestorationalgorithmin itswhole,
andcontributedtowrite thepaper. P.S.providedthebleed-throughmapsfor theentiredatasetand,withE.S.,
improvedthebleed-throughidentificationmethodandoptimizedtherelatedalgorithm.Allauthorsparticipated
in theevaluationof theresults, andreadandapprovedthefinalmanuscript.
Acknowledgments:ThisworkhasbeenpartiallysupportedbytheEuropeanResearchConsortiumforInformatics
andMathematics (ERCIM),within the“AlainBensoussan”FellowshipProgramme.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Fadoua,D.;Bourgeois,F.L.;Emptoz,H. RestoringInkBleed-ThroughDegradedDocument ImagesUsing
aRecursiveUnsupervisedClassificationTechnique. InDocumentAnalysis SystemsVII; LectureNotes in
ComputerScience;Springer: Berlin,Germany,2006;Volume3872,pp. 38–49.
2. Tan,C.L.;Cao,R.; Shen,P. RestorationofArchivalDocumentsUsingaWaveletTechnique. IEEETrans.
PatternAnal.Mach. Intell. 2002,24, 1399–1404.
3. Estrada,R.;Tomasi,C.Manuscriptbleed-throughremovalviahysteresis thresholding. InProceedingsof the
10thInternationalConferenceonDocumentAnalysisandRecognition,Barcelona,Spain,26–29July2009;
pp.753–757.
4. Shi, Z.; Govindaraju, V. Historical document image enhancement using background light intensity
normalization. InProceedingsof the17th InternationalConferenceonPatternRecognition,Cambridge,UK,
26–26August2004;pp.473–476.
5. Tonazzini,A.;Bedini,L.; Salerno,E. Independentcomponentanalysis fordocumentrestoration. Int. J.Doc.
Anal. Recognit. 2004,7, 17–27. [CrossRef]
6. Wolf, C. Document ink bleed-through removalwith two hiddenMarkov randomfields and a single
observationfield. IEEETrans. PatternAnal.Mach. Intell. 2010,32, 431–447. [CrossRef] [PubMed]
7. Sun,B.;Li,S.;Zhang,X.P.;Sun, J. BlindBleed-ThroughRemoval forScannedHistoricalDocument Image
withConditionalRandomFields. IEEETrans. ImageProcess. 2016,25, 5702–5712. [CrossRef] [PubMed]
8. Tonazzini,A. Colorspace transformations foranalysisandenhancementofancientdegradedmanuscripts.
J.PatternRecognit. ImageAnal. 2010,20, 404–417. [CrossRef]
9. Drira,F.;Bourgeois,F.L.;Emptoz,H.Restoring InkBleed-ThroughDegradedDocument ImagesUsingaRecursive
UnsupervisedClassificationTechnique;Bunke,H.,Spitz,A.,Eds.;Springer: Berlin,Germany,2006;Volume3872,
pp.38–49.
10. Tonazzini,A.; Gerace, I.;Martinelli, F. Multichannel blind separation anddeconvolutionof images for
documentanalysis. IEEETrans. ImageProcess. 2010,19, 912–925. [CrossRef] [PubMed]
11. Tonazzini, A.; Bedini, L.; Salerno, E. AMarkovmodel for blind image separationby amean-fieldEM
algorithm. IEEETrans. ImageProcess. 2006,15, 473–482. [CrossRef] [PubMed]
12. Moghaddam, R.F.; Cheriet,M. Lowquality document imagemodeling and enhancement. Int. J. Doc.
Anal.Recognit.2009,11, 183–201. [CrossRef]
13. Moghaddam,R.F.;Cheriet,M. Avariationalapproachtodegradeddocumentenhancement. IEEETrans.
PatternAnal.Mach. Intell. 2010,38, 1347–1361. [CrossRef] [PubMed]
14. Tonazzini,A.;Salerno,E.;Bedini,L. Fast correctionofbleed-throughdistortion ingrayscaledocumentsby
ablindsourceseparationtechnique. Int. J.Doc.Anal. Recognit. 2007,10, 17–27. [CrossRef]
13
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik