Seite - 14 - in Document Image Processing
Bild der Seite - 14 -
Text der Seite - 14 -
J. Imaging 2018,4, 68
15. Yi,H.;Brown,M.S.;Dong,X.User-assistedink-bleedreduction. IEEETrans. ImageProcess.2010,19,2646â2658.
16. Rowley-Brooke,R.;Pitié,F.;Kokaram,A.C. ANon-parametricFrameworkforDocumentBleed-through
Removal. InProceedingsof the2013 IEEEConferenceonComputerVisionandPatternRecognition(CVPR),
Portland,OR,USA,23â28 June2013;pp. 2954â2960.
17. Merrikh-Bayat, F.; Babaie-Zadeh,M.; Jutten, C. Linear-quadratic blind source separating structure for
removingshow-throughinscanneddocuments. Int. J.Doc.Anal. Recognit. 2011,14, 319â333. [CrossRef]
18. Dubois,E.;Dano,P. Joint compressionandrestorationofdocumentswithbleed-through. InProceedingsof
the2ndIS&TArchivingConference,Washington,DC,USA,26â29April2005;pp. 170â174.
19. Bertalmio,M.;Sapiro,G.;Caselles,V.;Ballester,C. ImageInpainting. InProceedingsof the2000SIGRAPH
Conference,NewOrleans,LA,USA,23â28 July2000;pp. 417â424.
20. Criminisi,A.;Perez,P.;Toyama,K. RegionïŹllingandobject removalbyexemplar-based image inpainting.
IEEETrans. ImageProcess. 2004,13, 1200â1212. [CrossRef] [PubMed]
21. Guillemot,C.;Meur,O.L. Image inpainting: Overviewand recent advances. IEEESignal Process. Mag.
2014,31, 127â144. [CrossRef]
22. Xu, Z.; Sun, J. Image inpaintingbypatchpropagationusingpatch sparsity. IEEETrans. ImageProcess.
2010,19, 1153â1165. [PubMed]
23. Shen,B.;Hu,W.;Zhang,Y.;Zhang,Y. Imageinpaintingviasparserepresentation. InProceedingsof the2009
IEEEInternationalConferenceonAcoustics,Speech,andSignalProcessing,Taipei,Taiwan,19â24April2009;
pp. 697â700.
24. Walha,R.;Drira, F.; Lebourgeois, F.;Garcia,C.;Alimi,A.M. JointdenoisingandmagniïŹcationofnoisy
Low-Resolution textual images. InProceedingsof the InternationalConferenceonDocumentAnalysisand
Recognition,Tunis,Tunisia,23â26August2015.
25. Hoang,T.;BarneySmith,E.;Tabbone,S. Sparsity-basededgenoiseremoval frombilevelgraphicaldocument
images. Int. J.Doc.Anal. Recognit. 2014,17, 161â179. [CrossRef]
26. Kumar,V.;Bansal,A.;Tulsiyan,G.H.;Mishra,A.;Namboodiri,A.; Jawahar,C.V.SparseDocument Image
Coding for Restoration. In Proceedings of the International Conference onDocument Analysis and
Recognition,Washington,DC,USA,28August2013.
27. Buades,A.;Coll,B.;Morel, J. Anon-localalgorithmfor imagedenoising. InProceedingsof the2005IEEE
ComputerSocietyConferenceonComputerVisionandPatternRecognition(CVPRâ05) ,SanDiego,CA,USA,
20â25 June2005;pp. 60â65.
28. Smith,S.;Brady, J. SusanâAnewapproachto lowlevel imageprocessing. Int. J.Comput.Vis.1997,23, 45â78.
[CrossRef]
29. Jung,M.;Bresson,X.;Chan,T.F.;Vese,L.A.NonlocalMumfordâShahregularizers forcolor imagerestoration.
IEEETrans. ImageProcess. 2011,20, 1583â1598. [CrossRef] [PubMed]
30. Zhang,X.;Burger,M.;Bresson,X.;Osher,S. Bregmanizednonlocal regularizationfordeconvolutionand
sparsereconstruction. SIAMJ. ImageSci. 2010,3, 253â276. [CrossRef]
31. Zhang, J.; Zhao, D.; Gao, W. Group-based sparse representation for image restoration. IEEE Trans.
ImageProcess.2014,8, 3336â3351. [CrossRef] [PubMed]
32. Dong,W.; Zhang, L.; Shi, G.; Li, X. Nonlocally centralized sparse representation for image restoration.
IEEETrans. ImageProcess. 2013,22, 1620â1630. [CrossRef] [PubMed]
33. Tonazzini, A.; Savino, P.; Salerno, E. A non-stationary densitymodel to separate overlapped texts in
degradeddocuments. Signal ImageVideoProcess. 2015,9, 155â164. [CrossRef]
34. Gerace, I.; Palomba, C.; Tonazzini, A. An inpainting technique based on regularization to remove
bleed-throughfromancientdocuments.InProceedingsofthe2016InternationalWorkshoponComputational
Intelligence forMultimediaUnderstanding(IWCIM),ReggioCalabria, Italy,27â28October2016;pp. 1â5.
35. Elad,M.;Aharon,M. Imagedenoisingviasparseandredundantrepresentationsover leanreddictionaries.
IEEETrans. ImageProcess. 2006,15, 3736â3745. [CrossRef] [PubMed]
36. Mairal, J.;Elad,M.;Sapiro,G. Sparserepresentationforcolor imagerestoration. IEEETrans. ImageProcess.
2008,17, 53â69. [CrossRef] [PubMed]
37. Ravishankar,S.;Bresler,Y.MRimagereconstructionfromhighlyundersampledk-spacedatabydictionary
learning. IEEETrans.Med. Imag. 2011,30, 1028â1041. [CrossRef] [PubMed]
14
zurĂŒck zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik