Seite - 40 - in Document Image Processing
Bild der Seite - 40 -
Text der Seite - 40 -
J. Imaging 2018,4, 80
used,contrary toFigure10where just fewof themwereconsidereddueto thecomputationalcostof
thecorrespondingexperiment.
As it isobvious inFigure12, thevalueof justfivemain-bodiesseemstogivesignificantlybetter
results (smallerSSE)which is farsmaller thanseven, initiallyusedin[17]. Thevaluesof1and2that
givevery lowerrorprovedvery lowinthecaseof lowresolution,whilemorecharacterscouldconfuse
thesystem.
3.8. Set-Upof theNumberMofFragments toUse
Inorder toestimate thebestnumber for thewindowwidth, thewholevalidationsetwasalso
usedinourprogramwiththeratioR=0.14,H=2mbs,andW=5mbs, forvaluesof theamountof
the fragmentsMof4and5. More fragments couldbeused,however it is aproblemin thecaseof
small imagesor imagesof lowresolution. Thesumofsquareerrors (SSE)wasconsideredasevaluation
measure for thescenarios:
• Four fragments,meanof the fragments: SSEontheevaluationset563
• Five fragments,meanof the fragments: SSEontheevaluationset513
• Five fragments,medianof the fragments: SSEontheevaluationset509
Obviously, themedianwasfinallyselectedas thebestcase.
3.9. ExperimentalResults on theDatabases
Having specified the parameters above, several experiments were conducted for the four
databases,oneachtest set. Inorder todemonstrate theflexibilityof theproposedtechnique, twomore
slantdetectiontechniqueswerealsousedfor theslantdetectionpart,usingtheparameters thatwere
specifiedbytheuseofour technique [9]. The technique [23]detects theslantbyusing themainpartof
the texthavingremovedthehorizontalparts, ascenders, anddescenders. The technique [24]estimates
theslantbyusingthepeaksof theslantedwords.
The experimental results for all databases are given in Table 1 through RMSE. For the
TrigraphSlantDB: the RMSE is given only for the normal slants (between−45 and +45 degrees)
but for thebothestimators (Axel&Rolland). In theTrigraphSlant, eachwriterwasasked to force
differentslants in twoof the fourdocuments, thesearenotpresentedsince theresultswerestrange
duetounnatural slant>45degrees.
Table1.Experimental results
Database ProposedSlantDetection[9] SlantDetection[23] SlantDetection[24]
TrigraphSlant (Axelestimat.) 7.08 8.30 6.99
TrigraphSlant (Rollandest.) 7.43 7.97 7.44
GeorgeWashingtonDB 3.44 6.53 3.40
BH2MDB 4.68 6.04 5.03
PrintDB 2.99 4.32 2.97
Therewereseveral significantdifferences in theRMSEvaluesbetweenthevariousDBs. Several
reasons for thisare:
• In theTrigraphSlant, thewriting ismodernandnotasuniformas in thehistoricaldocuments.
Whenexaminedbyhumanestimators,astandarddeviationof2.45wasobserved.
• GeorgeWashingtonDBofhistoricaldocuments ismoreuniform.
• BH2Mpresentsmoredensitywhichmadeourcharactermainbodysizealgorithmfailmore times.
• PrintDBincludesprintedtext that isartificiallyslanted,andtherefore isuniform.
• Wepresent in the followingexperiments inorder toevaluate the improvementbroughtbyour
slantdetection and removal techniqueondocument analysis and recognition tasks. We thus
conduct recognition experiments on printed documents with an OCR, and word spotting
40
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik