Seite - 49 - in Document Image Processing
Bild der Seite - 49 -
Text der Seite - 49 -
J. Imaging 2018,4, 57
ofLBP,all thenon-uniformpatternsaremarkedwiththesamelabel,whereas, foruniformpatterns,
different labelsareused,one foreachpattern. This isperformedbecause ithasbeenobservedthat
certainpatternsconstituteamajorportionofall texturefeatures.ULBPuses,MĂ(Mâ1)+3symbols
to label thepatterns.
2.4. Rotation InvariantandUniformLBP(RIULBP)
InRIULBP[22], thepatternsarechosensuchthat theyarebothrotation invariantanduniform.
Similar toULBP,herealsoallnon-uniformrotation invariantpatternsareplaced inoneseparatebin.
ThisvariantofLBPcanbeformulatedas
RIULBP(M,R)(xcen,ycen)= {
âMn=1 f(Inâ Icen), ifU(RILBP(M,R)(xcen,ycen))â„2,
M+1, otherwise. (7)
Here,
U(RILBP(M,R)(xcen,ycen))=( M
â
n=2 |f(Inâ Icen)â f(Inâ1â Icen)|) + |f(IMâ Icen)â f(I1â Icen)|. (8)
2.5. RobustandUniformLBP(RULBP)
In the present work, we have proposed a minor but signiïŹcant modiïŹcation to Robust
LBP (RLBP) [24] to develop RULBP. In RLBP, the argument of the function f(x) i.e., (Inâ Icen)
(seeEquation(2)) is replacedwith (Inâ Icenâ th),where thactsasa thresholdvalue. Thisessentially
means that thevalueof Inhas tobegreater than thecenterpixelâsgrayvalue Icenbyanamount th
toproducea1(seeFigure4). Thisdescriptor isdevisedwith the ideaof increasingtherobustness to
negligiblechanges ingrayvalue. Therefore, theRLBPcanbeformallydeïŹnedas follows:
RLBP(M,R)(xcen,ycen)= M
â
n=1 f(Inâ Icenâ th)Ă2nâ1. (9)
In thiswork,wehavegivenanotionof setting thevalueof th for text/non-text separation in
handwrittendocumentsandalsoincorporatedtheideaof âuniformpatternâ inRLBPtodevelopRULBP.
Figure 4. IllustrationofRLBPvaluegeneration for a 3Ă 3gray imagewindow,whereM=8and
Radius=1.Here, thevalueof th=90.
2.5.1. Ideaof âUniformPatternâ
To prove the effectiveness of LBP for texture classiïŹcation [22], it has been shown that over
90 percent of the LBPs (generated using a segment of the image) present in a textured surface
are âuniformpatternsâ. Besides that, as âuniformpatternsâ consider a very limitednumber of 0/1
transition, theycanefïŹcientlydetect the commonmicrofeatures like corner, edgeandspots. Thus,
49
zurĂŒck zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik