Seite - 57 - in Document Image Processing
Bild der Seite - 57 -
Text der Seite - 57 -
J. Imaging 2018,4, 57
In the literature,different texture featuredescriptorshavebeenusedtoseparate textandnon-text
regions inprinteddocuments.Here,wehaveconsideredtwoof therecentonesandcomparedtheir
individualperformancesonourdataset,with theperformanceof theRULBPoperator. Oneof the
methodsusesGLCMasfeaturedescriptor [4]while theotherusesHistogramofOrientedGradients
(HOG)[29]. Table4gives theaccuracyofclassificationforeachof the three featuredescriptorsusing
allfiveclassifiers. It canbeseenthat theRULBPoperatoroutperformstheother featuredescriptors in
mostcases.
Table4.Performancecomparison in termsof recognitionaccuracy(in%)ofGLCM,HOGandRULBP
(th=105)onthepresentdataset forfivedifferentclassifiers.
Method NB MLP SMO KNN RF
RULBP 50.38 90.78 88.62 90.20 91.96
GLCM 77.92 90.22 87.21 87.70 90.90
HOG 36.22 80.46 72.61 88.89 91.42
6.Conclusions
In thepresentwork,ourobjective is tovalidate theutilityofLBPbasedfeaturedescriptors for the
classificationof textandnon-textcomponentspresent inhandwrittendocuments, inacomprehensive
way. We have experimentally shown that RLBP performs better than simple LBP, ILBP, RILBP,
ULBPandRIULBP.However,amajor issueinusingRLBPistheselectionofasuitablethreshold,which
mightbedomainspecific. In thecurrent researchattempt,wehaveselectedtheoptimalvalueof the
thresholdonthebasisofa fewobservations,which isalsovalidatedthroughanexperiment.Wehave
provideda justificationfor this selectionaswell,whichwebelievewould leadtodeeper insight into
theselectionof the thresholdusedforLBP,especially in thecaseofhandwrittendocuments. Excluding
that,wehaveproposedaminormodification toRLBPby incorporating the concept of a ‘uniform
pattern’ todevelopRULBP,andithasbeenshownexperimentally thatRULBPperformsbetter than
RLBP. In the future,wewould lookfor theother texturebasedfeaturesalongwithsomeothervariants
ofLBP to see theirutility in the current context. In the future,weplan to enlarge thedatabaseby
incorporatingvarious typesofdocument images,which, in turn,wouldmotivatemoreresearchers
todosometangiblework. It isworthmentioninghere that, inorder toanalyze the textswritten in
differentscripts, ascript recognitionmodule is required[30], sinceanOCRengine is script specific.
Thus,our futureplan is to incorporate thesameinourmodel tomake itmoreuseful inamulti-script
environment.Anotherarea thatwewill look into is thegeneralizationof the thresholdvalue th, so that
wemayformulateasolidsetofprocedures thatcanbeuseful foranydocument, insteadofusingan
empiricalmethodtodetect thesame.
Acknowledgments:Thiswork ispartiallysupportedbytheCenter forMicroprocessorApplicationforTraining
EducationandResearch(CMATER)research laboratoryof theComputerScienceandEngineeringDepartment,
JadavpurUniversity, India, andPURSE-II andUPE-II JadavpurUniversity projects. RamSarkar is partially
fundedbyaDSTgrant (EMR/2016/007213).
AuthorContributions:Thefirst threeauthors—SouravGhosh,DibyadwatiLahiriandShowmikBhowmik—have
contributedequallytothepaper. ErginaKavallieratouandRamSarkarprovidedessentialguidanceandcorrections
atvariousstagesof thework.
Conflictsof Interest:Theauthorshavenoconflictof interest.
Abbreviations
Thefollowingabbreviationsareusedin thismanuscript:
LBP LocalBinaryPattern
GLCM Gray-LevelCo-OccurrenceMatrix
CC ConnectedComponents
BB BoundingBox
57
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik