Seite - 75 - in Document Image Processing
Bild der Seite - 75 -
Text der Seite - 75 -
J. Imaging 2018,4, 37
2.2.NNDQC:DesignofDQCUsingApproximateNearestNeighbour
Aspeed-upisobtainedbyusingapproximatenearestneighborsearch insteadofusingDTW.
• Insteadofconcatenating theclassmeanvectors,noweachclassmeanvector isdivided intosame
p number of fixed length portions. An index is built over frequent classmeans cut portions
usingFLANN.
• EachcutportionofXq is comparedwith frequentclassmeanscutportionsusingnearestneighbor
searchwithEuclideandistance.
• Thebestmatchingcutportionsof themeanvectorsareusedtosynthesize themeanvector for the
queryclass.
However,usingnearestneighbor(NNDQC)insteadofsubsequenceDTWbasedscheme(DPDQC)
compromises theoptimalityof theclassifiersynthesis.
Fewqualitativeexamples for the twoversionsofDQCaregiven inFigure1. Wehaveshown
the retrieval results for frequent queries and rare queries. For each case, we have compared the
retrieval results forNNDQCandDPDQC.Forrarequery,wehavealsoshowntheresults forQuery
expansion(QE).
Frequent
Rare NN DQC
NN DQC
DP DQC
DP DQC
NN DQC
QE with
Query Method Rank 1 Rank 2 Rank
4Rank
3 Rank 5
Retrieved Results
Query
Query
Figure1.Figureshowsfewquerywordsandtheircorrespondingretrieval results. Thefirstcolumn
showsthequery imageandthecorrespondingimages ineachroware its retrieval results. First two
rowsshowfrequentqueryresults. Thefirst rowshowstheresults forNNDQCandsecondrowshow
the results forDPDQC.Row3 toRow5showthe retrieval results for a rarequery. Row3shows
the results forNNDQCandRow4show the results forDPDQCandRow5show the results for
queryexpansion.
3.ApproximatingtheDTWDistance
In general, DTW distance has quadratic complexity in the length of the sequence.
Nagendaretal. [20]proposedFast approximateDTWdistance (FastApprxDTW),which is a linear
approximationtotheDTWdistance. Forapairofgivensequences,DTWdistanceiscomputedusingthe
optimalalignment fromall thepossiblealignments. Thisoptimalalignmentgivesasimilaritybetween
thegivensequencesbyignoringlocalshifts.Computationofoptimalalignment is themostexpensive
operationinfindingtheDTWdistance.
Foragivensetof sequences, therearesimilaritiesbetweentheoptimalalignmentsofdifferent
pairs of sequences. For example, if we take two different classes, the top alignments (optimal
alignments/leastcostalignments)betweenthesamplesofclass1andthesamplesofclass2always
havesomesimilarity. Forasmalldataset, the topalignmentsbetweenfewclass1samplesandfew
class 2 samples areplotted inFigure2. It canbeobserved that the topalignments are inharmony.
Basedonthis idea,wecomputeasetofglobalprincipalalignmentsfromthetrainingdatasuchthat the
computedglobalprincipalalignmentsshouldbegoodenoughforapproximatingtheDTWdistance
betweenanynewpairof sequences. Fornewtest sequences, insteadoffindingtheoptimalalignments,
theglobalprincipalalignmentsareusedforcomputingtheDTWdistance. Thisavoidsthecomputation
75
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik