Seite - 81 - in Document Image Processing
Bild der Seite - 81 -
Text der Seite - 81 -
J. Imaging 2018,4, 37
Foragivenquery, itneedsenoughsamples fromthequeryclass forgettingnovelglobalprincipal
alignments. However, in anydatabase, the number of samples for frequent classes dominate the
numberofsamples for rareclasses. Theglobalprincipalalignments for frequentqueriesare likely to
dominatetherarequeries. Therefore, theprecomputedglobalprincipalalignmentsinFastapproximate
DTWmaynotcaptureall thecorrelations for rarequeryclasses. In theproposedQSDTWdistance,
theglobalprincipalalignmentsare learnedfromthengrams (cut-portions)of frequentclasses. These
n-gramsare inabundanceandalsosharedwithrarequeries, thus thereareenoughn-gram samples
for learningthecut-specificalignments. Thecomputedqueryspecificalignments for thecut-portions
outperformthealignmentsobtainedfromFastapproximateDTW.
Table4.Retrievalperformanceofvariousmethods for rarequeries.
Dataset RetrievalResults (mAP)forRareQueries
UsingNearestNeighbourClassifier UsingDQC(ExemplarSVM)
DTW FastApprxDTW [20] QSDTW Euclidean FastDTW [30] sDTW aNN FastDTW QSDTW QE
D1 0.82 0.77 0.83 0.69 0.75 0.91 0.90 0.91 0.95 0.98
D2 0.81 0.74 0.80 0.65 0.74 0.89 0.90 0.90 0.94 0.95
D3 0.73 0.66 0.71 0.59 0.62 0.80 0.78 0.80 0.91 0.96
It is worthmentioning that FastDTW [30], which is an approximationmethod, attempts to
compute theDTWdistance inanefficientway. Itdoesnotconsidercutportionsimilarities,whichmay
be influencedbyvariousprintingstyles. Hence, theseapproachesarenotapplicable inoursetting
where thedatasetcanhavewordsprinted invariedprintingstyles,andthuscanresult inamarked
degradationofperformanceforrarequeries. SincequeryspecificDTWfindstheapproximateDTW
distanceusingcut specificprincipal alignments, it canexploitpropertieswhichcannotbeusedby
otherDTWapproximationmethods.
Tosummarize, theexperimentsdemonstrate that theproposedqueryspecificDTWperformswell
forbothfrequentandrarequeries. Sinceit is learningthealignmentsfromngrams, itperformscomparable
tosDTWdistanceforrarequeries. Forsomequeries, itperformedbetter thantheDTWdistance.
5.5. Results forRareQueryExpansion
Theresults forQSDTWenhancedwithqueryexpansion (QE)usingfivebestmatchingsamples
arealsogiven inTable4. It isobservedthatQEfurther improves theperformanceofourproposed
method. Toshowtheeffectivenessofqueryexpansion,wehavecomputed theaverageof theDTW
distancebetweenthegivenqueryandalldatabasesamples thatbelongedto thequeryclass. Likewise,
wecomputedtheaverageof theDTWdistancefor thereformulatedquery. Table5showsacomparison
of theaveragedDTWdistancefor thegivenqueryandthereformulatedqueryusing2,5,7,and10most
similar (to thequery)samples fromthedatabase. Fromtheresults,wecanobserve thatcomparedto
thegivenquery, thereformulatedqueryusingfivebestmatchingsamplesgives the lowestaveraged
DTWdistance to the samples from the query class. Thismeans the reformulatedquery is a good
representative for thegivenquery.However,usingninebestmatchingsamples for reformulatingthe
query leads toahigheraverageofDTWdistances. Thismeanssomeirrelevantsamples to thequery
arecomingin the topsimilarsamples.
Table5.Thetablegives theaveragesumofDTWdistance for thegivenqueryandthereformulated
querywithvaryingnumberofsamplesn fromthequeryclass.
AverageofDTWDistance
Forgivenquery ForReformulatedQuery
n=2 n=5 n=7 n=10
2.67±0.19 2.69±0.23 2.52±0.13 2.58±0.21 2.94±0.29
81
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik