Seite - 84 - in Document Image Processing
Bild der Seite - 84 -
Text der Seite - 84 -
J. Imaging 2018,4, 37
For thegiventwosamplesxandyof lengthN, FastDTW[30] iscomputedin the followingway.
First, these two samples are reduced to smaller length (1/8 times) and thenaiveDTWdistance is
appliedover thereducedlengthsamples tofindtheoptimalwarppath.Next,both theoptimalpath
andthereducedlengthsamples fromthepreviousstepareprojectedtohigher (twotimes) resolution.
Insteadoffillingall the entries in the costmatrix in thehigher resolution, only the entries around
aneighborhoodof theprojectedwarppath,governedbya parametercalledradius r, arefilledup.
Thisprojectionstep iscontinueduntil theoriginal resolutionwasobtained. Thetimecomplexityof
FastDTWisN(8r+14),where r is theradius. TheperformanceofFastDTWdependsontheradius r.
Thehigher thevalueof r, thebetter theperformance is. The timecomplexityofQSDTW/FastApprx
DTWisN∗p,where p is thenumberofprincipalalignments. Ingeneral, p<<8r+14, forgettingthe
similarperformance inboth themethods.
6.Conclusions
WehaveproposedqueryspecificDTWdistance for faster indexing inthedirectqueryclassifier
DQC[18]. ThebenefitofdeployingQSDTWwithDQCis that it results in linear timecomplexity.
Therefore,we are able to index all the frequentmeanvectors of thedatabase for constructing the
meanvector for thequeryclass in theDQCclassifier. SinceQSDTWdistanceperformsequallywell
asDTWdistanceandbecauseweconsiderall the frequentmeanvectors for indexing, theproposed
methodenhances theperformanceof theDQC.Unlikepreviousapproaches, theproposedQSDTW
distanceusesboththeclassmeanvectorsandthequeryinformationforcomputingtheglobalprincipal
alignments for thequery. Theuseofngrams for computing theglobalprincipal alignmentsmakes
themethodperformwell for rarequeries,whicharequerywordimages thatbelongtonon-frequent
wordclasses forwhichmeanvectorsarenotcomputedfor thedatabase. Thequeryexpansion(QE)
further improves theperformanceofQSDTW.Wehavedemonstrated theutility of theproposed
techniqueover threedifferentdatasets. TheproposedqueryspecificDTWperformswell comparedto
thepreviousDTWapproximations.
Acknowledgments:ThisworkwassupportedfromthegrantreceivedfortheIMPRINTproject titled"Information
access fromdocument imagesof Indian languages," fromMHRD,Governmentof India.
AuthorContributions:GattigorlaNagendarandVireshRanjanperformedtheexperiments.GauravHaritand
C.VJawaharwrote thepaper.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Nagy,G.TwentyYearsofDocument ImageAnalysis inPAMI.PAMI2008,22, 38–62,doi:10.1109/34.824820.
2. Sivic, J.; Zisserman, A. Video Google: A Text Retrieval Approach to Object Matching in Videos.
In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France,
13–16October2003;pp. 1470–1477.
3. Rath, T.M.; Manmatha, R. Word spotting for historical documents. IJDAR 2007, 9, 139–152,
doi:10.1109/SIU.2008.4632567.
4. Zeki, Y.I.; Manmatha, R. An Efficient Framework for Searching Text in Noisy Document Images.
In Proceedings of the 2012 10th IAPR InternationalWorkshop onDocumentAnalysis Systems (DAS),
GoldCost,QLD,Australia, 27–29March2012;pp. 48–52.
5. Konidaris,T.;Gatos,B.;Ntzios,K.;Pratikakis, I.; Theodoridis, S.; Perantonis, S.J.Keyword-guidedword
spotting inhistoricalprinteddocumentsusingsyntheticdataanduser feedback. IJDAR2007,9, 167–177,
doi:10.1007/s10032-008-0067-3.
6. Basilios,G.;Nikolaos,S.;Georgios,L. ICDAR2009HandwritingSegmentationContest. InProceedingsof
the10thInternationalConferenceonDocumentAnalysisandRecognition,Barcelona,Spain,26–29 July2009;
pp. 1393–1397.
84
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik