Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Seite - 87 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 87 - in Document Image Processing

Bild der Seite - 87 -

Bild der Seite - 87 - in Document Image Processing

Text der Seite - 87 -

Journal of Imaging Article HandwrittenDevanagariCharacterRecognition UsingLayer-WiseTrainingofDeepConvolutional NeuralNetworksandAdaptiveGradientMethods MaheshJangid1,*andSumitSrivastava2 1 DepartmentofComputerScienceandEngineering,SchoolofComputing&InformationTechnology, ManipalUniversity Jaipur,Rajasthan303007, India 2 Departmentof InformationTechnology,SchoolofComputing&InformationTechnology, ManipalUniversity Jaipur,Rajasthan303007, India; sumit.310879@gmail.com * Correspondence:mahesh_seelak@yahoo.co.in;Tel.:+91-0141-3999279 Received: 6December2017;Accepted: 12February2018;Published: 13February2018 Abstract:Handwrittencharacter recognition iscurrentlygetting theattentionof researchersbecause ofpossibleapplications inassisting technologyforblindandvisually impairedusers,human–robot interaction,automaticdataentry forbusinessdocuments, etc. In thiswork,weproposea technique torecognizehandwrittenDevanagari charactersusingdeepconvolutionalneuralnetworks (DCNN) whichareoneof therecent techniquesadoptedfromthedeeplearningcommunity.Weexperimented theISIDCHARdatabaseprovidedby(InformationSharingIndex) ISI,KolkataandV2DMDCHAR databasewithsixdifferentarchitecturesofDCNNtoevaluate theperformanceandalso investigate theuse of six recentlydeveloped adaptive gradientmethods. A layer-wise technique ofDCNN hasbeen employed that helped to achieve thehighest recognition accuracy andalsoget a faster convergencerate. Theresultsof layer-wise-trainedDCNNarefavorable incomparisonwith those achievedbyashallowtechniqueofhandcraftedfeaturesandstandardDCNN. Keywords:handwrittencharacter recognition;deep learning;Devanagari characters; convolutional neuralnetwork;adaptivegradientmethods 1. Introduction In the last fewyears,deeplearningapproaches[1]havebeensuccessfullyappliedtovariousareas suchas imageclassification, speech recognition, cancer celldetection, video search, facedetection, satellite imagery, recognizing trafficsignsandpedestriandetection,etc. Theoutcomeofdeep learning approaches is alsoprominent, and in somecases the results are superior tohumanexperts [2,3] in thepastyears.Mostof theproblemsarealsobeingre-experimentedwithdeeplearningapproaches with theview toachieving improvements in the existingfindings. Different architectures ofdeep learninghavebeen introduced in recent years, suchasdeep convolutional neural networks, deep beliefnetworks, andrecurrentneuralnetworks. Theentire architecturehas showntheproficiency in different areas. Character recognition is one of the areaswheremachine learning techniques havebeenextensivelyexperimented. Thefirstdeep learningapproach,which isoneof the leading machine learningtechniques,wasproposedforcharacter recognition in1998onMNISTdatabase [4]. Thedeep learning techniques are basically composedofmultiple hidden layers, andeachhidden layerconsistsofmultipleneurons,whichcompute thesuitableweights for thedeepnetwork.Alotof computingpower isneededtocompute theseweights, andapowerful systemwasneeded,which wasnoteasilyavailableat that time. Since then, theresearchershavedrawntheirattentiontofinding thetechniquewhichneeds lesspowerbyconvertingthe images into featurevectors. In the last few decades,a lotof featureextractiontechniqueshavebeenproposedsuchasHOG(histogramoforiented J. Imaging 2018,4, 41 87 www.mdpi.com/journal/jimaging
zurück zum  Buch Document Image Processing"
Document Image Processing
Titel
Document Image Processing
Autoren
Ergina Kavallieratou
Laurence Likforman-Sulem
Herausgeber
MDPI
Ort
Basel
Datum
2018
Sprache
deutsch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing