Seite - 95 - in Document Image Processing
Bild der Seite - 95 -
Text der Seite - 95 -
J. Imaging 2018,4, 41
accuracyby increasing thenumberofkernelsofconvolutional layer. ThenetworkarchitecturesNA-2,
NA-4andNA-6hadmorekernels thanNA-1,NA-3andNA-5andtheyproducedhigherrecognition
accuracyasobservedinTable2. Thenumberof trainableparameters foreachnetworkarchitecture
is showninTable3. Theentirenetworkarchitecturewasalso testedusing theRMSPropoptimizer,
andtheresultshavereported inTable4. TheNA-6networkproduced96.02%recognitionaccuracy
withRMSPropwhile95.58%withAdam.ThebehaviorofNA-6withRMSPropateachepochcanbe
seen inFigure4.
(SRFK 1$
1$
1$
1$
1$
1$
Figure3. Inthisfigure,wedrawtherecognitionaccuracyobtainedwithdifferentnetworkarchitectures
onISIDCHARdatabaseateachepoch. TheAdamoptimizerwasused.
Table 2. In this table,we report the results in termofmaximum,minimum,mean, and standard
deviation recognitionaccuracyobtainedwithdifferentnetworkarchitectureson ISIDCHARwhen
thesystemtrainedfor50epochswith theAdamoptimizer. Thebest scoresare inbold.
RecognitionAccuracy DifferentNetworkArchitectures
NA-1 NA-2 NA-3 NA-4 NA-5 NA-6
Maximum 0.8571 0.8654 0.9153 0.9224 0.9324 0.9558
Minimum 0.7208 0.7701 0.8237 0.8363 0.8077 0.8385
Average 0.8436 0.8549 0.9000 0.9058 0.9190 0.9427
Std.Deviation 0.0204 0.0169 0.0165 0.0158 0.0178 0.0168
Table3.Listof trainableparameters ineachnetworkarchitecture.
NetworkArchitectures LayerType LayerSize TrainableParameters TotalParameters
NA-1 Conv1layer 64×64×64 1088
34,873,135Dense
layer 500 34,848,500
Output layer 47 23,547
NA-2 Conv1layer 64×64×64 1088
61,553,135Dense
layer 1000 61,505,000
Output layer 47 47,047
NA-3 Conv1layer 32×64×64 544
7,265,007
Conv2 layer 32×33×33 16,416
Dense layer 1000 7,201,000
Output layer 47 47,047
95
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik