Seite - 96 - in Document Image Processing
Bild der Seite - 96 -
Text der Seite - 96 -
J. Imaging 2018,4, 41
NetworkArchitectures LayerType LayerSize TrainableParameters TotalParameters
NA-4 Conv1layer 64×64×64 1088
14,514,735
Conv2 layer 64×33×33 65,600
Dense layer 1000 14,401,000
Output layer 47 47,047
NA-5 Conv1layer 32×64×64 544
1,649,423
Conv2 layer 32×33×33 16,416
Conv3 layer 32×17×17 16,416
Dense layer 1000 1,569,000
Output layer 47 47,047
NA-6 Conv1layer 64×64×64 1088
3,316,335
Conv2 layer 64×33×33 65,600
Conv3 layer 64×17×17 65,600
Dense layer 1000 3,137,000
Output layer 47 47,047
Table 4. In this table,we report the results in termofmaximum,minimum,mean, and standard
deviation recognitionaccuracyobtainedwithdifferentnetworkarchitectureson ISIDCHARwhen
thesystemtrainedfor50epochswith theRMSPropoptimizer. Thebest scoresare inbold.
RecognitionAccuracy DifferentNetworkArchitectures
NA-1 NA-2 NA-3 NA-4 NA-5 NA-6
Maximum 0.8572 0.8641 0.903 0.9079 0.9311 0.9602
Minimum 0.7093 0.7475 0.7711 0.7788 0.7422 0.8067
Average 0.8383 0.8501 0.8927 0.8941 0.9150 0.9463
Std.Deviation 0.0321 0.0232 0.0210 0.0197 0.0308 0.0252
(SRFK 1$
1$
1$
1$
1$
1$
Figure4. Inthisfigure,wedrawtherecognitionaccuracyobtainedwithdifferentnetworkarchitectures
onthe ISIDCHARdatabaseateachepoch. TheRMSPropoptimizerwasused.
The best recognition accuracy of the ISIDCHARdatabasewas obtainedwithNA-6 network
architecturewithRMSPropoptimizer.However, itmaybepossible that thisnetworkcouldperform
betterwithother optimizers. To further investigate,weperformedexperimentswith sixdifferent
optimizers. Table 5 shows the recognition accuracy obtainedwithNA-6 at different optimizers.
Thehighest recognitionaccuracy96.02%wasrecordedwithNA-6atRMSPropoptimizer. TheAdam
96
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik