Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Seite - 129 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 129 - in Document Image Processing

Bild der Seite - 129 -

Bild der Seite - 129 - in Document Image Processing

Text der Seite - 129 -

J. Imaging 2018,4, 15 true forSpanishdocuments fromthe16thcenturyasseen inFigure1.Ancient textsalso includerare characters,grammatical forms,wordspellingsandnamedentitiesdistinct frommodernones. Such forms lead toOut-Of-Vocabulary (OOV)words, i.e.,words thatdonotbelong to thedictionaryof theHTRsystem. ImprovingHTRsystemsatboth imageand language levels isan important issue for the recognitionof suchancient historical documents. Themaingoal of this paper is todesign efficientHTRsystemsthatprocessdocument imageswritten inSpanishandthatcancopewithancient character formsandlanguage. Figure1.Sample imageofaSpanishdocument fromthe16thcentury. Several approacheshavebeenproposed tobuildopticalmodels for handwriting recognition. Suchapproaches includeHiddenMarkovModels (HMMs) [1–4],RecurrentNeuralNetworks (RNNs) suchasLongShort-TermMemory(LSTMs)andtheirvariants: Bi-directionalLSTMs(BLSTMs)and Multi-DimensionalLSTMs(MDLSTMs) [5].HMMsenableembeddedtrainingandcanberobust to noiseandlineardistortions.However,RNNsandtheirvariantsaregenerativemodels thatperform better thanHMMsintermsofaccuracy.Nowadays,RNNscanbetrainedbyusingdedicatedresources such asGraphic ProcessorUnits (GPUs) that considerably reduce training time. ByusingGPUs, RNNscanbe trained inasimilar amountof timerequired to trainHMMswith traditionalCentral ProcessingUnits (CPUs). Usually, the inputsofHMMsandRNNsaresequencesofhandcraftedfeaturesorpixel columns. However, deep learning approaches starting with convolutional layers as the first layers allow extracting learning-basedfeatures insteadofhandcraftedones [6–8]. Generally, inHTRsystems, theopticalmodelsareassociatedwithdictionaries (lexicalmodels) andLanguageModels (LMs), usually at theword level, in order to direct the recognition of real words andplausibleword sequences (see Figure 2). In order to build open vocabulary systems, languagemodelsbasedoncharacterunitscanbeused[9]. Then, thedictionary is limitedto theset 129
zurück zum  Buch Document Image Processing"
Document Image Processing
Titel
Document Image Processing
Autoren
Ergina Kavallieratou
Laurence Likforman-Sulem
Herausgeber
MDPI
Ort
Basel
Datum
2018
Sprache
deutsch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing