Seite - 136 - in Document Image Processing
Bild der Seite - 136 -
Text der Seite - 136 -
J. Imaging 2018,4, 15
Figure6.CRNNsystemarchitecture.
TheAdamoptimizer [38]wasused to train thenetworkwith the initial learning rateof 0.001.
This algorithmcouldbe thought of as anupgrade forRMSProp [39], offeringbias correction and
momentum [40]. It provides adaptive learning rates for the stochastic gradient descent update
computedfromthefirstandsecondmomentsof thegradients. It alsostoresanexponentiallydecaying
averageof thepast squaredgradients (similar toAdadelta [41]andRMSprop)andthepastgradients
(similar tomomentum). Batchnormalization,asdescribed in [42],wasaddedaftereachconvolutional
layer in order to accelerate the trainingprocess. It basicallyworks bynormalizing each batch by
both themean and variance. The networkwas trained in an end-to-end fashionwith the CTC
loss function[35].
136
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik